GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MODERN VEHICLE TECHNOLOGY

(Code: 3340203)

Diploma Programme in which this course is offered	Semester in which offered
Automobile Engineering	4 th Semester

1. RATIONALE

Since last few decades, car designers have turned to high technology in order to meet ever more stringent emission control, ergonomics, safety regulations and the demands of customers for better cars at global level. Multi-modal transportation become increasingly common and intelligent vehicles will cater to diverse consumer needs for information, environmental responsibility and safety. Vehicle electronics contribute significantly to improve environmental performance of motor vehicles and are, therefore, an important enabler of "green" vehicle technology. Electronics offer improved control to a variety of vehicle systems, allowing for more efficient operation of engines and other power trains, heating and cooling systems etc., resulting in less fuel or other power consumed and thus, lower harmful emissions. Today's complex hybrid power trains could not be operated and managed without an array of electronics, including sensors, controllers and actuators. Furthermore, replacement of mechanical components with electronic components tends to be lighter, again leading to less demand for fuel and power options. This course aims to provide understanding of importance of multidisciplinary knowledge in application by appreciation about role of sensor, actuator and electronics components for modernization of automobile.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop different types of skills leading to the achievement of the following competency:

• Improve efficiency, security, safety & performance of automobile using electronics and technology.

3. COURSE OUTCOMES (CO's)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Describe construction, functions and applications of various sensors and actuators used in modern vehicle
- ii. Explain modern Ignition systems of S.I. and C.I. Engines
- iii. Explain latest advancement in Engine technology
- iv. Identify and describe various advanced peripheral system used in automobile
- v. Demonstrate various safety features and equipment used in modern vehicle
- vi. Identify various modern features for better functioning of vehicle.

4. TEACHING AND EXAMINATION SCHEME

Tea	ching S	cheme	Total Credits	Examination Scheme						
(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks		Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA			
4	0	2	6	70	30	20	30	150		

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

5. DETAILED COURSE CONTENTS

Unit	Major Learning	Topics and Sub-topics
	Outcomes (in Cognitive	
	Domain)	
Unit – I	1a.Differentiate working	1.1 Concept of general measurement system &
Applications	principle of Mechanical	difference between Mechanical and electrical/
of	and Electrical measuring	electronic instruments;
Transducers,	systems.	1.2 Measurement of Temperature: Working of
Sensors &	1b.Explain various	Thermocouple and Thermister;
Actuators.	equipments working on	1.3 Measurement of Speed: Contact less electrical
	the principle of	tachometer, Inductive, Capacitive type tachometer,
	electrical energy for	Stroboscope;
	measurement of various	1.4 Measurement of Force: Strain gauge load cell;
	quantities.	1.5 Electrical method for moisture measurement;
	1c. List various sensors	1.6 Electromechanical Type Transducer –
	and actuators applicable	Potentiometric resistance type, Inductive,
	in automobile vehicle	Capacitive, Piezometric; Photoelectric.
	with neat sketch.	1.7 Basic requirement of Sensors, Functions,
	1d.Describe	Applications and Circuitry arrangement of various
	construction, functions	Sensors such as Mass Air flow rate sensor, Exhaust
	and applications of	gas Oxygen concentration, Throttle plate angular
	various sensors and	position, Crankshaft angular position, Coolant
	actuators with neat	temperature, Intake air temperature, Manifold
	sketch.	absolute pressure (MAP), Vehicle speed Sensor.
		Transmission gear selector position, Methanol
		sensor, Rain Sensor & Rain sensing wiper.
		1.8 Working Principal and Functions of various
		Actuators such as Solenoid Actuators, Motorized
		Actuators, and Stepper motors.
Unit– II	2a.Differentiate working	2.1 Electrical & electronics
Advance	principle of electrical	ignition system.
Ignition	and electronics ignition	2.2 Modern Spark Ignition system (e.g. D.T.S.I,
system	system.	T.D.S.I., Multi electrode etc. System)
	2b. Explain modern	2.3 Insulated coils.
	Ignition systems in S.I.	2.4 Concept of Non-battery Energy Storage: Ultra
	and C.I. Engines with	capacitors and Flywheels.
	neat sketch.	

Unit	Major Learning	Topics and Sub-topics
	Outcomes (in Cognitive	
	Domain)	
Unit– III	3a. Explain need of	3.1 Introduction & types of hybrid vehicle.
Advancement	advancement in Engine	3.2 Hybrid drives systems.
in Engine and	technology.	3.3 Compressed air car.
related	3b. Explain alternative	3.4 Solar Cars.
components.	power sources.	3.5 Hydrogen operated Engine.
	3c. Describe Blue	3.6 Basic concepts of Blue Motion Technologies like
	Motion Technology for	DSG, TSI, TDI, GDI variable valve timing system.
	Green Vehicle	
	Technology.	
Unit– IV	4a. Explain importance	4.1 Security Systems.
Modernizatio	of application of	Remote keyless entry, Anti-theft system, Alarm
n in	peripheral systems in	system.
Peripheral	automobiles.	4.2 Entertainment and peripheral systems.
systems.	4b. Explain advanced	Integrated communications, Proximity sensors
	peripheral system in	
	automobile with neat	4.3 Global positioning satellites(GPS)
	sketch.	
Unit– V	5a.Explain an	5.1 Seat Belts, Seat Belts pre-tensioners, Smart seatbelt
Advance	importance of safety	reminder.
Safety	with respect to	5.2 Concepts of Crash test, Crash sensors.
Equipments.	automobile vehicle.	5.3 Air bags
	5b. Describe various	Introduction of air bags, Duel stage air bags, Side
	safety features and	Airbags.
	equipments used in	5.4 The pressure monitoring system
	automobile.	5.5 Pedestrian Protection & Night Vision with
TT	6. Eveloin requirement	pedestriali delectioli.
UIIII- VI Modown	of modern features in	6.1 Flower Shulling doors.
Footures in	of modelli features m	control system
Automobilo	6b List various modern	6.3 Telescopic steering wheel / adjustable pedals
Automobile.	features for better	6.4 Rear mounted Radar & Cameras
	functioning of vehicle	6.5 Electromagnetic suspension and levitation
	renetioning of veniere.	6.6 Automatic L ift Axle
		6.7 Regenerative Braking Systems
		6.8 Continuous Variable Transmission
		6.9 Intelligent Parking Assist System, Self Parking

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

			Distribution of Theory				
Unit	Unit Title	Teaching	R	U	Α	Total	
No.		Hours	Level	Level	Level		
1.	Applications of Transducers / Sensors & Actuators.	15	07	07	07	21	
2.	Advance Ignition system	5	03	03	01	7	
3.	Advancement in Engine and related components.	10	06	06	02	14	
4.	Modernization in Peripheral systems.	7	03	03	01	7	
5.	Advance Safety Equipments.	7	03	03	01	7	

			Distribution of Theory Marks			Marks
Unit	Unit Title	Teaching	R	U	Α	Total
No.		Hours	Level	Level	Level	
6.	Modern Features in Automobile.	12	06	06	02	14
	Total	56	28	28	14	70

Legends: R = Remember, U = Understand, A= Apply and above Level (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF PRACTICAL/EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme

S. No	Unit No	Practical/Exercises (Course Outcomes in Psychomotor Domain)	
110.	110.	(ruly seven)	Required
1	Ι	Measure shaft speeds by using Speed measurement device.	4
2	Ι	Use strain gauge as sensing element for different types of sensors.	4
3	Ι	Identification and demonstration of different sensors and actuators.	4
4	Ι	Study and demonstrate use of various sensors and actuators for multi	4
		cylinder modern vehicle.	
5	III	Study of Hybrid motor vehicle.	4
6	V	Demonstration of Peripheral system.	4
7	V	Identify and demonstrate various safety systems used in vehicle	4
8	VI	Study of various modern features used in vehicle. Also prepare write	4
		up regarding benefits of these features.	

8. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Seminar by students on various modern technologies in automobile like automatic dipper system, night vision with pedestrian detection, GPS, DTSI, TDI, TSI, TFSI, CVT etc.
- ii. Preparation of display boards or charts for various electronic components like LED, sensors, actuators etc.
- iii. Assembly/ disassembly/ connections of various electronic components with automobile actuating mechanisms for understanding principle of operation and control.

- iv. Individual or group-based projects to prepare working model of various modern mechanisms such as solar car, hybrid car, regenerative brakes, automatic dipper system, CVT etc.
- v. Teacher guided self learning activities to prepare report as an assignment from industrial survey/internet/library/or group discussion on any of the modern automobile technology.

9. SPECIAL INSTRUCTIONAL STRETAGIES (If any)

- i. Arrange visit to garages of advance/high hand four wheeler manufacturers and demonstrate functioning of advance technologies/systems used in the vehicles.
- ii. Show video/animation films on functioning of advance/modern systems being used in vehicles.
- iii. Assignment on comparison of popular brands of vehicles on the basis of advanced/modern systems being used for different purposes in these vehicles (Students may be asked to do market survey or visit the websites of the manufacturers to collect data)

10. SUGGESTED LEARNING RESOURCES

A. List of Books

Sr.	Author	Title of Books	Publication
No.			
1	Tom Denton	Automobile Electrical and electronic systems	Arnold ISBN-0750662190
2	Theraja BL	Fundamentals of Electrical and Electronics Engineering	NIrja Construction & Development Co Ltd.
3	P L Kohli	Automotive Electrical Equipments	Tata Mc-Graw Hill
4	A K Sawney	Electrical and Electronics measuring Instruments	Dhanpat Rai and sons.
5	John turner	Automotive Sensors	Momentum press, LLC NEW YORK ISBN- 9781606500095 ISBN- 1606500090
6	Barbara J. Peters, George A. Peters	Automotive Vehicle Safety	SAE International and Taylor & Francis ISBN - 978-0-7680-1096-1
7	J. Marek, HP. Trah, Y.Suzuki, I. Yokomor	Sensors for Automotive Technology	ISBN – 3527295534 Wiley-vch , weinheim
8	Jeff Daniels	Modern Car Technology	Haynes Publishing

B. List of Major Equipment/ Instrument

- a. Charts for various electronic components like sensors, diodes, LEDs etc.
- b. Display board of various electronic components like sensors, diodes, LEDs etc.

c. Working model of various automotive mechanisms operated through modern technology.

C. List of Software/Learning Websites

Links for Literature:

- 1 http://en.wikipedia.org/wiki/Mass_flow_sensor mass flow rate sensor
- 2 http://en.wikipedia.org/wiki/Oxygen_sensor exhaust gas o2 sensor
- 3 http://en.wikipedia.org/wiki/Crankshaft_position_sensor crank shaft position
- 4 http://en.wikipedia.org/wiki/Engine_coolant_temperature_sensor coolant temp sensor
- 5 http://en.wikipedia.org/wiki/MAP_sensor MAP sensor
- 6 http://en.wikipedia.org/wiki/Wheel_speed_sensor vehicle speed sensor
- 7 http://en.wikipedia.org/wiki/Rain_Sensor rain sensor
- 8 http://en.wikipedia.org/wiki/Ignition_system diff between electrical and electronics
- 9 http://en.wikipedia.org/wiki/Wasted_spark modern ignition system
- 10 http://en.wikipedia.org/wiki/Hybrid_Synergy_Drive hybrid drive system
- 11 http://en.wikipedia.org/wiki/Compressed_air_car compressed air engine
- 12 http://en.wikipedia.org/wiki/Air_engine compressed air engine
- 13 http://en.wikipedia.org/wiki/Solar_car
- 14 http://en.wikipedia.org/wiki/Direct-Shift_Gearbox
- 15 http://en.wikipedia.org/wiki/Dual-clutch_transmission
- 16 http://en.wikipedia.org/wiki/Turbocharged_Direct_Injection
- 17 http://en.wikipedia.org/wiki/Gasoline_direct_injection
- 18 http://auto.howstuffworks.com/question122.htm/printable
- 19 http://wot.motortrend.com/toyota-confirms-400-hp-awd-hybrid-r-concepts-yaris-roots 396083.html
- 20 http://en.m.wikipedia.org/wiki/On-board_diagnostics
- 21 http://www.powershow.com/view/bc1fe-
- Mzg4N/Energy_Storage_Systems_For_Advanced_Power_Applications_powerpoint_ppt_present ation
- 22http://www.sae.org/servlets/product?PROD_TYP=PAPER&PARENT_BPA_CD=GV&TECH_C D=SI
- 23 http://en.wikipedia.org/wiki/Intelligent_Parking_Assist_System

Links for Video

- i. http://www.youtube.com/watch?v=g5d-749l3Kw (Video on Solar Car Assembly)
- ii. http://www.youtube.com/watch?v=40dOyZIVlPw (Video on How to make Solar Car)
- iii. http://www.youtube.com/watch?v=W2R-0DQ8gi8 (Video on Solar Toy Car Hindi)
- iv. http://www.youtube.com/watch?v=tyo21ghGD5M (Video on Audi V6 TDI Technology)
- v. http://www.youtube.com/watch?v=kJ5opH5qgj0 (TSI engine with Active Cylinder Management Technology)
- vi. http://www.youtube.com/watch?v=20qqavckWdw&list=TL6h-rxUo5sjdowaUfxVw83XSMro9OIvkR (Video for VW TSI twincharger)
- vii. http://www.youtube.com/watch?v=wmHxiY2J8Ok (Ford Ecoboost Animation)
- viii. http://www.youtube.com/watch?v=H-fij4bnmDw (Video on TFSI Engine in Action)
- ix. http://www.youtube.com/watch?v=BlCUhzxsxQo&list=PL57B331239D8F5F0D
- X. http://www.youtube.com/watch?v=iRh6SxwTc2g&list=PL57B331239D8F5F0D (Video of Hyundai new engine 1.6 GDi)
- xi. http://www.youtube.com/watch?v=uotknd6hlxk (What is GPS?)
- xii. http://www.youtube.com/watch?v=v_6yeGcpoyE (GPS Constellation)
- xiii. http://www.youtube.com/watch?v=Z3Pm3HHUyzk and http://www.youtube.com/watch?v=PLjld-edVj8 (How GPS works)
- xiv. http://www.youtube.com/watch?v=RUWz6FQfXN0 (Global Mini Tracking Device GSM GPRS GPS-for Mini Project)
- xv. http://www.youtube.com/watch?v=xITyQsirIvA (Pedestrian Detection in Darkness)
- xvi. http://www.youtube.com/watch?v=XEGdrLjTyjs (Wireless Pedestrian Detection Technology)

- xvii. http://www.youtube.com/watch?v=mj0EwLHualM (Pedestrian detection and tracking using stereo vision techniques)
- xviii. http://www.youtube.com/watch?v=NrpW1e8IFeA (Simulation of a Signalized Pedestrian Crossing)
- xix. http://www.youtube.com/watch?v=DojthARCO6k (Bosch Night Vision Night Vision plus)
- xx. http://www.youtube.com/watch?v=9IodzwsdGKM (Working principle of Hybrid Synergy Drive (HSD))
- xxi. www.youtube.com/watch?v=zgt1DBYR9GE (Electromagnetic suspension and levitation in automobiles)
- xxii. <u>http://www.youtube.com/watch?v=y8jRAwIzPTM</u> (Bosch Regenerative Braking)
- xxiii. <u>http://www.youtube.com/watch?v=jffePCHt11A</u> (How the CVT Transmission Works)
- $xxiv.\ http://www.youtube.com/watch?v=c47 caRqbbnE\ (Continuously\ Variable\ Transaxle\ Operation)$
- xxv. <u>http://www.youtube.com/watch?v=8an3Bt4MXJg</u> (Video for Nissan Quest Sliding Doors)
- xxvi. http://www.youtube.com/watch?v=wNLfwOQ6mPw&list=TLuawUd0DfNwvjBcdEQWGeNqIaJ2JFA4UH (Toyota Prius Intelligent Parking Assist demonstration)

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. D. A. Dave,** H.O.D., Automobile Engineering Department, Sir Bhavsinhji Polytechnic Institute, Bhavnagar.
- **Prof. S. V. Trivedi**, H.O.D., Automobile Engineering Department, Parul Institute of Technology, Po. Limda, Ta. Waghodia, Di. Vadodara.
- **Prof. A. C. Suthar** Lecturer, Automobile Engineering Department, M. L. Institute of Diploma Studies, Bhandu
- **Prof. Sulay Patel**, I/C H.O.D., Automobile Engineering Department, L. J. Polytechnic, Ahemdabad.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. C. K. Chugh, Professor, Department of Mechanical Engineering.
- Dr. K. K. Jain, Professor, Department of Mechanical Engineering