GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING - SEMESTER - I/II • EXAMINATION - SUMMER- 2017

Subject Code: 3300001 Date: 12 - 06- 2017

Subject Name: Basic Mathematics

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

4. Each question carry equal marks (14 marks)

.1	$log_3(log_3 27)$	cs using appropriate cho	pice from the give	en options.	1
	a3	b. 0	c. 1	d. 3	
٩					
		બ 0	s. 1	S. 3	
2	If $\sqrt{\log_2 x} =$	3 then $x = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$			
	a. 8	b. 512	c. 9	d. 81	
5	If $\sqrt{\log_2 x} =$	b. 512 3 then x =			
	અ. 8	બ 512	8. 9	S. 81	
3	$16^{-\log_{16}\frac{2}{5}} = $ _				
			5	. 2	
	5 2	0. — 2	c. $\frac{5}{2}$	d. $-\frac{2}{5}$	
3	10				
	અ. 2	$\Theta_{1} = \frac{5}{2}$	8. $\frac{5}{2}$	S. $-\frac{2}{5}$	
4	2007 2008	2009	2	5	
	2010 2011	2012 =			
	2013 2014	2015			
	a. 2016	b. 0	c. 2024	d. 2033	
	12007 2000	20001			
8	2007 2008 2010 2011	2009			
	2013 2014	2015			
	અ. 2016		8. 2024		
5	16 A [0 0	[1]	7.4		
	IJ A = [2 0]	5] and $B = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} th$	en BA =		
	a. [22]	b. $\begin{bmatrix} 2 & 0 & 5 \\ 6 & 0 & 15 \\ 5 & 0 & 20 \end{bmatrix}$	[2]	d.[2 0 20]	
		b. 6 0 15	c. 0		
		L5 U ZUJ	LZ01		
				1/6	

6 For any square matrix A, if
$$A^2 - 3A + 4I = 0$$
 then $A^{-1} =$ a. $\frac{1}{4}(3I - A)$ b. $\frac{1}{4}(A - 3I)$ c. $\frac{1}{4}A$ d. $\frac{1}{3}A^2 + 4$

ક કોઈપણ ચોરસ શ્રેણિક
$$A$$
 માટે જો $A^2-3A+4I=0$ હોય તો $A^{-1}=$ અ. $\frac{1}{4}(3I-A)$ બ. $\frac{1}{4}(A-3I)$ ક. $\frac{1}{4}A$ ડ. $\frac{1}{3}A^2+4$

7 If A is non singular matrix then
a.
$$A^{T} = A$$
b. $A^{T} = -A$
c. $|A| \neq 0$
d. $|A| = 0$

૭ જો
$$A$$
 સામાન્ય શ્રેણિક હોય તો ____
અ. $A^T = A$ બ. $A^T = -A$ s. $|A| \neq 0$ s. $|A| = 0$

8
$$216^{\circ} = \underline{\qquad} radian$$

a. $\frac{5\pi}{6}$ b. $\frac{5\pi}{3}$ c. $\frac{6\pi}{5}$ d. $\frac{3\pi}{5}$

$$\mathcal{C}$$
 216 $^{0}=$ __radian
 અ. $\frac{5\pi}{6}$ બ. $\frac{5\pi}{3}$ 8. $\frac{6\pi}{5}$ S. $\frac{3\pi}{5}$

9 The principal period of
$$\sin^2 36 + \cos^2 36$$
 is ___ a. 36 b. 1 c. 2π d. Not possible

હ
$$sin^2 36 + cos^2 36$$
 નુ મુખ્ય આવર્તમાન ____ છે
અ. 36 બ. 1 ક. 2π ડ. અશક્ય છે.

10 In
$$\triangle ABC$$
, $\sec\left(\frac{B+C}{2}\right) =$
a. $cosec \frac{A}{2}$ b. $cosec A$ c. $\sec\frac{A}{2}$ d. $sec A$

૧૦
$$\triangle ABC$$
 માં $\sec\left(\frac{B+C}{2}\right) =$ _______
 અ. $\csc\frac{A}{2}$ બ. $\csc A$ §. $\sec\frac{A}{2}$ S. $\sec A$

99
$$3 \sin 20 - 4 \sin^3 20 =$$
 9. $\frac{1}{2}$ 9. $\frac{\sqrt{3}}{2}$ 5. $-\frac{1}{2}$

12 The area of a circle made from
$$8\pi$$
 cm long wire is _____sq.cm.

c. 8\pi

b. 16π

a. 4π

d. 12π

- 13 Formula for surface area of a close cylinder is _____
 - a. $\pi r(h+r)$
- b. $2\pi rh$
- c. $2\pi r(h+r)$
- d. $\pi r^2 h$
- ૧૩ બંધ નળાકાર નું કુલ પૃષ્ઠફળ માટે નું સુત્ર_____
 - અ. $\pi r(h+r)$
- બ. 2πrh
- s. $2\pi r(h+r)$
- S. $\pi r^2 h$
- 14 The perimeter of square whose area is 100 sq.cm.is _____
 - a. 10 cm
- b. 20 cm
- c. 40 cm
- d. 60 cm
- ૧૪ 100 યો. સે. મી. ક્ષેત્રફળ વાળા ચોરસ ની પરિમિતિ = _____
 - અ. 10 cm
- ы. 20 cm
- s. 40 cm
- s. 60 cm
- Q.2 (a) Attempt any two ક્રોઇપણ બે ના જવાબ આપો.

- 06
- 1. If $\log_{10} 2 = 0.30103$ and $\log_{10} 3 = 0.47712$ then evaluate $\log_{10} 5$ and $\log_{10} 1.2$ without using logtable
- ૧. જો $\log_{10} 2 = 0.30103$ અને $\log_{10} 3 = 0.47712$ ફોય તો $\log_{10} 5$ અને $\log_{10} 1.2$ ની કિમતો લધુગણક કોષ્ટક નો ઉપયોગ કર્યા વગર શોધો
- 2. The diameter of a circle is 100 cm. If the angle between two radii is 36^0 then find the length of the arc cut off by them . (take $\pi=3.142$)
- ર. એક વર્તુળ નો વ્યાસ ૧૦૦ સેમી. છે. જો બે ત્રિજ્યા ઓ વચ્ચેનો ખૂણો ૩6º હોય તો તેમના દ્વારા કપાચેલ ચાપની લંબાઈ શોધો.
- 3. The surface area of a sphere is 616 sq. cm. Find the diameter of the sphere.
- 3. એક ગોલકની વક્કસપાટી નું ક્ષેત્રફળ 616 ચો. સેમી છે. તો તે ગોલકનો વ્યાસ શોધો
- (b) Attempt any two કોઇપણ બે ના જવાબ આપો.

08

- 1. If $\log_{2x} x = a$, $\log_{3x} 2x = b$ and $\log_{4x} 3x = c$ then prove that abc + 1 = 2bc
- ૧. જો $\log_{2x}x=a$, $\log_{3x}2x=b$ અને $\log_{4x}3x=c$ હોય તો સાબિત કરો કે abc+1=2bc
- 2. Prove that : $\log_2\left(\frac{1}{320}\right) + \frac{1}{\log_{10}2} + 5 = 0$
- ર. સાબિત કરો : $\log_2\left(\frac{1}{320}\right) + \frac{1}{\log_{10} 2} + 5 = 0$
- 3. A cylindrical tank of petrol pump has capacity 38500 liters. If the

diameter of this tank is 3.5 meter then find its height.

- 3. એક પેટ્રોલ પંપ ની નળાકાર ટાંકી ની ક્ષમતા 38500 લીટર ની છે. જો તેનો વ્યાસ 3. પ મીટર હોય તો તેની ઊંચાઈ શોધો
- Q.3 (a) Attempt any two કોઇપણ બે ના જવાબ આપો.

06

1. Evaluate :
$$\begin{vmatrix} x+a & x+b & x+c \\ y+a & y+b & y+c \\ z+a & z+b & z+c \end{vmatrix}$$

૧. કિમત શોધો :
$$\begin{vmatrix} x+a & x+b & x+c \\ y+a & y+b & y+c \\ z+a & z+b & z+c \end{vmatrix}$$

2. If
$$1 + x + x^2 = 0$$
 and $x^3 = 1$ then prove that
$$\begin{bmatrix} 1 & x^2 \\ x & x \end{bmatrix} \begin{bmatrix} x & x^2 \\ 1 & x^2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$$

ર. જો
$$1 + x + x^2 = 0$$
 અને $x^3 = 1$ હોય તો સાબિત કરો કે
$$\begin{bmatrix} 1 & x^2 \\ x & x \end{bmatrix} \begin{bmatrix} x & x^2 \\ 1 & x^2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$$

3. For what values of x, the matrix
$$\begin{bmatrix} 3-x & 2 & 2 \\ 1 & 4-x & 1 \\ -2 & -4 & -1-x \end{bmatrix}$$
 is singular?

$$x$$
 ની કઈ કિમતો માટે શ્રેણિક $\begin{bmatrix} 3-x & 2 & 2 \\ 1 & 4-x & 1 \\ -2 & -4 & -1-x \end{bmatrix}$ સામાન્ય શ્રેણિક **થશે**?

(b) Attempt any two કોઇપણ બે ના જવાબ આપો.

08

1. Evaluate :
$$\begin{bmatrix} 2 & 1 & -1 \\ 4 & -5 & 6 \\ -3 & 7 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -6 & 4 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ -2 & 1 \end{bmatrix}$$

૧. કિમત શોધો :
$$\begin{bmatrix} 2 & 1 & -1 \\ 4 & -5 & 6 \\ -3 & 7 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -6 & 4 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ -2 & 1 \end{bmatrix}$$

2. solve by matrix method :
$$2x + 3y = 6xy$$
 and $x - y = xy$

ર. શ્રેણિકની રીતે ઉકેલ શોધો :
$$2x + 3y = 6xy$$
 and $x - y = xy$

- 3. prove that every square matrix can be expressed as sum of symmetric matrix and skew symmetric matrix.
- 3. સાબિત કરો કે કોઈપણ ચોરસ શ્રેણિક ને સંમિત શ્રેણિક અને વિસંમિત શ્રેણિક ના સરવાળા તરીકે દર્શાવી શકાય છે.
- Q.4 (a) Attempt any two કોઇપણ બે ના જવાબ આપો.

06

- 1. prove that : $\cos \frac{\pi}{13} + \cos \frac{8\pi}{13} + \cos \frac{12\pi}{13} + \cos \frac{5\pi}{13} = 0$
- ૧. સાબિત કરો : $\cos \frac{\pi}{13} + \cos \frac{8\pi}{13} + \cos \frac{12\pi}{13} + \cos \frac{5\pi}{13} = 0$
- 2. If $\sin \alpha = 0.5$ then find the values of $\sin 3\alpha$ and $\cos 3\alpha$
- ર. જો $\sin \alpha = 0.5$ હોયતો $\sin 3\alpha$ અને $\cos 3\alpha$ ની કિમતો શોધો
- 3. If $tan\theta = -\frac{3}{4}$ and $sin\theta > 0$ then find the value of $sin\frac{\theta}{2}$ and $cos\frac{\theta}{2}$
- 3 . જો $tan\theta=-rac{3}{4}$ અને $sin\theta>o$ હોય તો $sinrac{\theta}{2}$ અને $cosrac{\theta}{2}$ ની કિમતો શોધો
- (b) Attempt any two કોઇપણ બે ના જવાબ આપો.

08

- 1. Without using logtable, find the value of cos720
- ૧. લધુગુણક કોષ્ટકનો ઉપયોગ કર્યા વગર cos72º ની કિંમત શોધો
- 2. If $2\cos(x+\theta)\cos(x-\theta) = 1$ then prove that $\tan^2 x = \frac{1-\tan^2\theta}{1+3\tan^2\theta}$
- ર. જો $2\cos(x+\theta)\cos(x-\theta)=1$ હોય તો સાબિત કરો કે $\tan^2 x=\frac{1-\tan^2\theta}{1+3\tan^2\theta}$
- 3. Prove that : $\tan^{-1} \left[\frac{\cos x}{1 + \sin x} \right] = \frac{\pi}{4} \frac{x}{2}$
- 3. સાબિત કરો : $\tan^{-1}\left[\frac{\cos x}{1+\sin x}\right] = \frac{\pi}{4} \frac{x}{2}$
- Q.5 (a) Attempt any two કોઇપણ બે ના જવાબ આપો.

06

- 1. If $a=3\vec{\imath}-\vec{\jmath}-4\vec{k}$, $b=4\vec{\jmath}-2\vec{\imath}-3\vec{k}$ and $c=\vec{\imath}-\vec{k}+2\vec{\jmath}$ then find the direction cosines of 3a-2b+4c
- ૧. જો $a = 3\vec{i} \vec{j} 4\vec{k}$, $b = 4\vec{j} 2\vec{i} 3\vec{k}$ અને $c = \vec{i} \vec{k} + 2\vec{j}$ ફોય તો 3a 2b + 4c ના દિફ કોસાઈનો શોધો.
- 2. Simplify : $(10\vec{i} + 2\vec{j} + 3\vec{k}) \cdot [(\vec{i} + 2\vec{k} 2\vec{j}) \times (3\vec{i} 2\vec{j} 2\vec{k})]$
- ર. સાદું રૂપ આપો : $(10\vec{i} + 2\vec{j} + 3\vec{k}) \cdot [(\vec{i} + 2\vec{k} 2\vec{j}) \times (3\vec{i} 2\vec{j} 2\vec{k})]$
- 3. If $A = \vec{i} \vec{j} 3\vec{k}$ and $B = \vec{j} + 2\vec{i} \vec{k}$ then prove that $(A \times B)$ is perpendicular to A
- 3. જો $A = \vec{t} \vec{j} 3\vec{k}$ અને $B = \vec{j} + 2\vec{t} \vec{k}$ હોય તો સાબિત કરો કે $(A \times B)$ એ A ને લંબ છે.

- (b) Attempt any two કોઇપણ બે ના જવાબ આપો.
- 1. If $x = \vec{i} + \vec{j} + \vec{k}$ and $y = 2\vec{i} \vec{j} \vec{k}$, then show that x is perpendicular to y. Also find a vector which is perpendicular to both x and y.
- ૧. જો $x=\vec{\imath}+\vec{\jmath}+\vec{k}$ અને $y=2\vec{\imath}-\vec{\jmath}-\vec{k}$, હોય તો દર્શાવો કે x એ y ને લંબ છે. વળી x અને y બંજ્ઞેને લંબ હોય તેવો સદિશ શોધો.
- 2. The constant forces $3\vec{i} + \vec{k} + 2\vec{j}$ and $\vec{i} + 5\vec{j} + 2\vec{k}$ acting on a particle displace it from the point $\vec{i} + 3\vec{j} 2\vec{k}$ to the point $3\vec{i} + \vec{j} + 4\vec{k}$. Find the total work done.
- ર અચળ બળો $3\vec{i} + \vec{k} + 2\vec{j}$ અને $\vec{i} + 5\vec{j} + 2\vec{k}$ કણ પર લાગતા તેનું બિંદુ $\vec{i} + 3\vec{j} 2\vec{k}$ થી બિંદુ $3\vec{i} + \vec{j} + 4\vec{k}$ સુધી સ્થાનાંતર થાય છે. તો આ દરમ્યાન થયેલ કુલ કાર્ય શોધો.
- 3. Prove that the angle between the vectors $\vec{i} + \vec{j} \vec{k}$ and $2\vec{i} + \vec{k} 2\vec{j}$ is $\sin^{-1}\left(\frac{\sqrt{26}}{3\sqrt{3}}\right)$
- 3 સાબિત કરો કે સિંદિશો $\vec{t}+\vec{j}-\vec{k}$ અને $2\vec{t}+\vec{k}-2\vec{j}$ વચ્ચેનો ખૂણો $\sin^{-1}\left(\frac{\sqrt{26}}{3\sqrt{3}}\right)$ છે.