BASIC ELECTRONICS(3320701)

OSCILLATOR

Need of an Oscillator

- An oscillator circuit is capable of producing ac voltage of desired frequency and waveshape.
- To test performance of electronic circuits, it is called signal generator.
- It can produce square, pulse, triangular, or sawtooth waveshape.
- High frequency oscillator are used in broadcasting.
- Microwave oven uses an oscillator.
- Used for induction heating and dielectric heating.

Types of Oscillators

- Sinusoidal or non-sinusoidal.
- An oscillator generating square wave or a pulse train is called multivibrator :
 - 1. Bistable multivibrator (Flip-Flop Circuit).
 - 2. Monostable multivibrator.
 - 3. Astable multivibrator (Free-running).
- Depending upon type of feedback, we have
 - 1. Tuned Circuit (LC) oscillators.
 - 2. RC oscillators, and
 - 3. Crystal oscillators.

Damped oscillation

>WHEN THE MAGNITUDE OF VOLTAGE IS DECREASING & AFTER SOME TIME, **BECOMES** IT O(ZERO) **OSCILLIATION** STOPPED.

DAMPED OSCILLIATION IN LC TUNED CIRCUIT

- •IN FIG A SHOWN THAT KEY S IS BROUGHT TO POSITION A.
- THE CAPASITOR C CHARGES. SO POSITIVE CHARGE IS TO UPPER PLATE W.R.T BOTTOM PLATE. SO VOLTAGE INCREASES & ENERGY STORED.
- •NOW WHEN KEY S IS CONNECTED TO POSITION C CAPACITOR CONNECTED TO L. SO VOLTAGE DECRESES.
- SO DAMPED OSCILLIATION IS DONE.

Sustained Oscillations with period Pcr

SUSTAINED OSCILLATION

WHEN PRODUCED ENERGY IS EQUL TO WASTE ENERGY IN CAPACITOR & INDUCTOR.

AMPLIFIER WITH POSITIVE FEEDBACK AS OSCILLIATOR

IN FIGURE POSITIVE FEEDBACK SHOWN .A IS GAIN . POSITIVE FEEDBACK IS GIVEN TO B. TOTAL GAIN :- Af=A/1-AB

Figure 2 (a) Increasing Oscillations (b) Decaying Oscillations (c) Constant-Amplitude Oscillations

IF AB < 1 SO Vf DECREASES (fig.b)
IF AB > 1 SO Vf INCREASES (fig.a)
IF AB = 1 (fig.c)
Af=A/1-AB = 1/0=Infinite.

REQUIRMENT OF AN OSCILLIATOR

- ACTIVE DEVICE:-It works as amplifier. For this value/FET/transistor are used.
- POWER SUPPLY:-It is necessary for biasing the active device & to compensate for the energy loss.
- FREQUENCY DETERMINING NETWORK:-In LC oscilliation frequency of oscilliator depends upon the tuned circuit.

REQUIRMENT OF OSCILLIATOR

- •POSITIVE FEEDBACK:- It is essential.
- •Initially value of AB should be more than 1.
- •Value of loop gain AB should be equal to 1 after the oscillations are started.

Hartley Oscillator

- The Hartley oscillator is an electronic oscillator circuit in which the oscillation determined by a tuned circuit consisting of capacitors & inductors, that is, an LC oscillator. The circuit was invented in 1915 by American engineer Ralph Hartley.
- The distinguishing feature of the Hartley oscillator is that the tuned circuit consist of a single capacitor in parallel with two inductors in series, and the feedback signal needed for oscillation is taken from the center connection of two inductors.

The diagram of Hartley oscillator

Hartley Oscillator

• Some important formulae from Hartley oscillator:

$$f = \frac{1}{2\pi\sqrt{LC}}$$
$$L = L1 + L2$$

Colpitt Oscillator

- A Colpitt oscillator, invented in 1918 by American engineer Edwin H. Colpitts, is one of a number of designs for LC oscillators, electronic oscillator that use a combination of inductors and capacitors to produce an oscillation at a certain frequency.
- The distinguishing feature of the colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

The diagram of Colpitt oscillator

Colpitt Oscillator

• Some important formulae from colpitt oscillator:

$$f = \frac{1}{2\pi\sqrt{LC}}$$
$$c = \frac{C1 C2}{C1 + C2}$$

Silicon Controlled Rectifier-SCR

• Circuit Symbol and Terminal Identification

SCR / Thyristor

 Anode and Cathode terminals as conventional pn junction diode

 Gate terminal for a controlling input signal

SCR/ Thyristor

- An SCR (Thyristor) is a "controlled" rectifier (diode) Control the conduction under forward bias by applying a current into the Gate terminal Under reverse bias, looks like conventional pn junction diode.
- 4-layer (pnpn) device.
- Anode, Cathode as for a conventional pn junction diode.
- Cathode Gate brought out for controlling input.

Equivalent Circuit

Apply Biasing

- With the Gate terminal OPEN, both transistors are OFF. As the applied voltage increases, there will be a "breakdown" that causes both transistors to conduct (saturate) making $I_{F} > 0$ and $V_{\Delta \kappa} = 0$.
- V_{Breakdown} = V_{BR(F)}

Apply a Gate Current

- For $0 < V_{AK} < V_{BR(F)}$,
- Turn Q₂ ON by applying a current into the Gate
- This causes Q₁ to turn ON, and eventually both transistors SATURATE
- $V_{AK} = V_{CEsat} + V_{BEsat}$
- If the Gate pulse is removed, Q₁ and Q₂ still stay ON!

How do you turn it OFF?

- Cause the forward current to fall below the value if the "holding" current, I_H
- Reverse bias the device.

Application Of SCR

- It is used for the speed control of the D. C motors.
- It used for the temperature control of the furnace,
- It is used in electronic ignition of automobiles.
- It is used in poly phase rectifiers and inverter.

THANK YOU