
SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

Chapter 5 :- Sorting & Hashing

1. SELECTION SORT:

Description of selection sort:

Selection sort is an algorithm that selects the smallest element from an unsorted list in
each iteration and places that element at the beginning of the unsorted list.

How Selection sort works ?

1. Set the first element as minimum.

2. Compare minimum with the second element. If the second element is smaller than minimum,

assign second element as minimum. Compare minimum with the third element. Again, if the

third element is smaller ,then assign minimum to the third element otherwise do nothing. The

process goes on until the last element.

3. After each iteration, minimum is placed in the front unsorted list.

4. For each iteration, indexing starts from the first unsorted element. Step 1 to 3 are repeated

until all the elements are placed at their correct positions.

61

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

Example:

62

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

63

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

64

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

ALGORITHM:-

For i<-0 to n-2 do

{

Min<-i

For j<- i+1 to n-1 do

{

If(a[j]<a[min])

Min<-j

}

Temp<- a[j]

65

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

A[j]<-a[min]

A[min]<-temp

}

Program:- Straight selection sort program.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[100],n,i,j,min,temp;

clrscr();

printf("\nHow many number enter in list:");

scanf("%d",&n);

printf("\nenter the number in list:");

for(i=0;i<n;i++)

{

scanf("%d",&a[i]);

}

for(i=0;i<n-1;i++)

{

min=i;

for(j=i+1;j<n;j++)

{

if(a[min]>a[j])

min=j;

}

if(min!=i)

{

temp=a[i];

a[i]=a[min];

a[min]=temp;

}

}

printf("\ndisplay the sorted list:");

for(i=0;i<n;i++)

{

printf("\n%d",a[i]);

66

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

}

getch();

}

OUTPUT:-

Application of selection sort:-

1. Small list is to be sorted.

2. Cost of swapping does not matter.

3. Checking of all the elements is compulsory.

4. Cost of writing to a memory matters like in flash memory .

67

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

2. INSERTION SORT

ALGORITHM

Step 1:[Intialization]

i==0, array[size], Val

Step 2:[read data in array]

while(I<size)

read (array(i))

I++

Step 3:[Insertion Opertaion]

I=1

while(i<size)

{

Val=array[i]

j=i+1

while(j>0 && array[j]>val)

{

array[j]=array[j-1]

j--;

}

}

Step 4:[if j is not equal]

then,

array[j]=val

Step 5:[Display the data]

i=0

while(I<size)

{ printer(array[i])

i++

}

Step 6:[END]

return(0)

68

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

EXAMPLE

Sorting Type

It's sorting Type is stable

Why insertion sort is stable ?

 A sorting algorithm is said to be stable if two objects with equal keys appear in the

same order in sorted output as they appear in the input unsorted array. Some sorting

algorithms are stable by nature like Insertion sort, Merge Sort, Bubble Sort, etc. .. .

In this case, unstable sort generates problems.

 Example:

A "stable" sorting algorithm keeps the items with the same sorting key in order. Suppose

we have a list of 5-letter words:

peach, straw, apple, spork

If we sort the list by just the first letter of each word then a stable-sort would produce:

apple ,peach ,straw ,spork

1. Wherever array size is less (typically less than 20)

2. If array is almost sorted – the better sorted the array is faster is insertion sort

3. Whenever space available space is less as it uses in-place sorting or else

temporary storage would be required.

4. For high performance in assembly or C when dealing cache memory.

5. If data is to be read from a slower peripheral device and then sorted, then time and

CPU cycles are wasted by using insertion sort this an be solved as insertion sort starts sorting

parallelly to data reading.

6. For short sub sections of data generated after quick sort.

7. To sort the linked list as nodes of the linked list are added one at a time in other

words it works with controlled rate-of-growth.

PROGRAM

#include<stdio.h>

#include<conio.h>

69

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

void main()

{

int a[10],temp,i,j,n;

clrscr();

printf("enter number : ");

scanf("%d",&n); for(i=0;i<n;i++)

{

printf("a[%d]=",i);

scanf("%d",&a[i]);

}

for(i=1;i<n;i++)

{.

for(j=i;j>0 && a[j-1]>a[j];j--)

{

temp=a[j];

a[j]=a[j-1];

a[j-1]=temp;

}

printf("sorted array!\n");

for(j=0;j<n;j++)

{

printf("%d\n",a[j]);

}

getch();

}

70

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

OUTPUT

3. QUICK SORT

QUICKSORT TECHNIQUE :

Quick sort is a divide and conquer algorithm. Quicksort first divides a large array into

two smaller sub-arrays: the low elements and the high elements.

Why quick sort is better than merge sort?

This a common question asked in DS interviews that despite of better worst-case

performance of merge sort, quicksort is considered better than merge sort. There are

certain reasons due to which quicksort is better especially in case of arrays:

Auxiliary Space : Merge sort uses extra space, quicksort requires little space and

exhibitsgood cache locality. Quick sort is an in-place sorting algorithm. In-place sorting

means no additional storage space is needed to perform sorting. Merge sort requires a

temporary array

71

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

to merge the sorted arrays and hence it is not in-place giving Quick sort the advantage of

space.

Worst Cases : The worst case of quicksort O(n2) can be avoided by using

randomizedquicksort. It can be easily avoided with high probability by choosing the right

pivot. Obtaining an average case behavior by choosing right pivot element makes it

improvise the performance and becoming as efficient as Merge sort.

Algorithm:

Step-1:[Function call]

Quicksort_sort(k,lb,ub)

Step-2:[Flag]

flag=1,lb=0,ub=size-1

Step-3:[Perform Sorting]

if(lb>ub) then

i=lb

j=ub

key=k[lb](First pivot element) repeat while(i<j)

repeat while(k[i]<key)

i=i+1 repeat while (k(j)>key)

j=j-1;

if(i<j)

72

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

then (Swap) k[i] and k[j]

else

flag=0 k[lb]=k[j]

callQuick_sort(k,lb,j-1) call Quick_sort(k,J+1,ub)

Step-4:[End]

return0;

TRACING :

PROGRAM:

73

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

#include<stdio.h>

void quicksort(int number[25],intfirst,int last)

{

Int i, j, pivot, temp;

if(first<last)

{

pivot=first; i=first; j=last;

while(i<j)

{

while(number[i]>=number[pivot]&&i<last) i++;

while(number[j]<=number[pivot]) j--;

if(i<j)

{

temp=number[i];

number[i]=number[j];

number[j]=temp;

}

}

temp=number[pivot];

number[pivot]=number[j];

number[j]=temp;

quicksort(number,first,j-1);

quicksort(number,j+1,last);

74

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

}

}

int main()

{

inti, count, number[25];

printf("How many elements are u going to enter?: "); scanf("%d",&count);

printf("Enter %d elements: ", count); for(i=0;i<count;i++){

scanf("%d",&number[i]);

}

quicksort(number,0,count-1); printf("Order of Sorted elements:

"); for(i=0;i<count;i++){

printf(" %d",number[i]);

}

return 0;

}

printf("Enter %d elements: ", count); for(i=0;i<count;i++){

scanf("%d",&number[i]);

}

quicksort(number,0,count-1); printf("Order of Sorted elements:

"); for(i=0;i<count;i++){

printf(" %d",number[i]);

}

return 0;

75

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

}

APPLICATION:

CommercialUse

no additionalmemory

It runs fast

Life-critical

Medicalmonitoring

life support in aircraft andspacecraft

Want to search very fast in an array?

Use binary search for it. But it has a pre requirements sorting through quick sort is able to

deal well with a huge list of items.

Amazon, EBay, Flipkart can show items sorted on the basis of price, ratings,

availability etc. Sorting

SORTING TYPE:

Quick sort is unstable and in place type of sorting.

So the space efficiency of Quicksort is O(log(n)). This is the space required

to maintain the call stack.

Now, according to the Wikipedia page on Quicksort, this qualifies as an in-place

algorithm, as the algorithm is just swapping elements within the input data structure.

Some sorting algorithms are stable by nature like Insertion sort, Merge Sort, Bubble

Sort, etc. And some sorting algorithms are not, like Heap Sort, Quick Sort etc.

Quicksort is an unstable algorithm because we do swapping of elements according

to pivot’s position (without considering their original positions).

76

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

4. BUBBLE SORT

The most widely known among beginning students of programming is the bubble

sort..It is easy to understand and simple sorting technique. but this sorting technique is not

efficient in comparison to other sorting technique.

The fundamental thing in this technique is, for ascending order sorting during every

pass the elements in the list comparing the adjacent elements and moves the small elements

to top of the list. For example, a table name list have n elements, so there are at most(n-

1)passes are required.

77

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

EXAMPLE

In given example, n=5 (total elements in list) so, total 4 passes(n-1) required in first

pass the elements list[1] and list[2] are compared, if list[1] is bigger than list[2] then

elements list[1] and list[2] are interchanged, other wise not exchange. then go for other

elements list[2] and list[3] are compared and interchange if list[3] are bigger then list[2].the

process is continued with all elements in the list, this is called first pass.

After one pass, the largest elements will be reach at location(position)on each successive

pass, the elements with next largest value will be placed in position n-1,n-2 etc. This method

will causes for small elements to move or bubble up.

ALGORITHM :

BUBBLE_SORT (LIST,N)

Step 1: [initialize]

i<-0

Step 2: while (i<n-1)repeat thru step 7

Step 3: j<-0

Step 4: while (j<n-i-1)repeat thru step 7

Step 5: if(list[j]>list(j+1))

then

(i)temp<-list[j]

(ii)list[j]<-list[j+1]

(iii)list[j+1]<-temp

Step 6: j j +1

Step 7: i i+1

Step 8: exit

78

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

PROGRAM :

#include<stdio.h>

#include<conio.h>

Void main()

{

Void bubble_sort(int[],int);

Int a[20],n,I;

Clrscr();

Printf(“\n how many number enter in list:”);

Scanf(“%d”,&n);

Printf(“\n enter the number in list:”);

For(i=0;i<n;i++)

Scanf(“%d”,&a[i]);

Bubble_sort(a,n);

}

Void bubble_sort(int b[],int n)

{

IntI,j,temp;

For(inti=0; i<n-1; i++)

{

For(int j=0;j<n-i-1; j++)

{

If(b[j]>b[j+1])

{

Temp=b[j];

b[j] = b[j=1];

79

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

b[j+1] = temp;

}

}

}

Printf(“\n display the sorted list:”);

For(inti=0;i<n; i++)

Printf(“\n %d”,b[i];

Getch();

}

5. MERGE SORT:

INTRODUCTION –

Merging is the process of combining two or more tables or lists into third list or

table.

Merge sort is a sorting algorithm, which is commonly used in computer science.

It works by recursively breaking down a problem into two or more sub-problems of the

Same or related types, until it become a simple enough to be solved directly. the solutions

of sub-problems are then combined to give a solution to the original problem. So, merge

Sort first divides the array into equal halves and then combines them in a sorted manner.

WORING OF MERGE SORT-

1. It is only one element in the list is already sorted, return.

2. Divide the list recursively into two halves until it can no more be divided.

3. Merge the smaller lists into new list in sorted order.

EXAMPLE –

80

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

PASS 1- 1 5 3 4 2 6

 (divide) (divide)

PASS 2- 1 5 3 4 2 6

(divide) (divide)

PASS 3- 1 5 3 4 2 6

(divide) (divide)

PASS 4- 1 5 3 4 2 6

(merge) (merge)

PASS 5- 1 5 3 4 2 6

(merge) (merge)

PASS 6- 1 3 5 4 2 6

 (merge) (merge)

PASS 7- 1 2 3 4 5 6

 (SORTED ARRAY)

Use of merge sort-

1. Merge sort is used in sorting linked list.

2. Overall time complexity of merge sort is 0. It is more efficient as it is in

worst case also the runtime is 0.

3. The space complexity of its 0(n). its means is takes more space and

may slower down operations for the last data sets.

81

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

Algorithm of merge sort –

Sorted array: output –Combine (a [0…...n-1])

If (low< high) then

{

Mid <- (low+ high)/2

Merge sort (a, low, mid)

Merge sort (a, mid+1, high)

Combine (a, low, mid, high)

}

ALGORITHM:

combine (a, [0………n-1]), low, mid, high

{

K<-low;

I<-low;

J<-mid+1

While (i<=mid & j<=high) do

{

If (a[i]<=a[j]) then

{

Temp[k]<-a[j]

j<-j+1

k<-k+1

}

Else

{

Temp[k]<-a[j]

j<-j+1

k<-k+1

}

}

While (i<=mid) do

82

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

{

Temp[k]<-a [j]

i<-i+1

k<-k+1

}

While (j<=high) do

{

Temp[k]<-a[j]

j<-j+1

k<-k+1

}

PROGRAM

#include<conio .h>

#include<stdio .h>

Void main ()

{

Void merge _sort (int [], int, int [], int, int []);

Int a [20], b [20], c [20], n, m, I, j;

clrscr ();

Printf (“enter 1
st

 lists:”);

Scanf (“%d”, &n);

Printf (“enter 2
nd

 lists:”);

Scanf (“%d”, &m);

Printf (“enter the no of 1
st

 list:”);

For (i=0; i<m; i++)

Scanf (“%d”, &a[i]);

Printf (“enter the no of 2
nd

 list:”);

For (j=o; j<m; j++)

Scanf (“%d”, &a[j]);

83

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

Merge sort (a, n, b, m, c);

}

Void merge sort (int a [], int n, int b [], int m, int c [])

{

Void merge sort (int list1 [], Int n, int list2 [], int m, int list3 [])

{

Int i=j =k =0, x;

While ((i< n) && (j<m))

{

If (list1 [i] < list2 [j])

{

List3 [k] = list[i];

I++;

K++;

}

If (list1 [i] > list2[j])

{

List3 [k] = list2 [j];

J++;

K++;

}

Else

{

List3 [k] = list1 [i];

I++;

K++;

}

If (I < n)

{

For (int x = I; x < n; x++)

{

84

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

List3 [k] = list1 [x];

k++;

}

}

Else

If (j < m)

{

For (int y=j; y < n; y++)

{

List3[k] = list2[y];

k++;

}

}

}

Printf (“display sorted list:”);

For (int I = 0; I < k; i++)

Printf (“%d”, list[k]);

Getch();

}

6. RADIX

SORT :

INTRODUCTION -

digit,

Radix sort is sorted by making pockets sorted according to unit’s digit, tens
hundred digit and so on.

It avoids the comparison by creating and distributing elements to
their radix.

into buckets according

Radix sort is also called Bucket Sort and Digital Sort.

USE -

Practically used in card sorter machine.

85

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

Also used when large list or large digit of number are sorted.

METHOD -

In this method, elements are sorted digit by digit.

In first pass : Lists are sorted according to the unit’s digit,

In second pass : Lists are sorted according to the tens digit, and

In third pass : Lists are sorted according to the hundred digit,

And this process is repeated upto N digits.

After this, combine the pockets to complete the radix sort.

In this process, the numbers are placed in the pockets according to the value

in the unit position [i.e. 23, 12 : 12, 23] and then numbers are collected from the pockets

and once again are placed in the pockets.

EXAMPLE -

Consider an input array :

Pockets : 170 45 75 90 802 24 2 66

First consider the 1’s place [Pass 1] :

170 45 75 90 802 24 2 66

170 90 802 2 24 45 75 66

Observe that170 has come before 90.This is because it appeared before in the original list.

Now consider the 10’s place [Pass 2] :

170 90 802 2 24 45 75 66

802 2 24 45 66 170 75 90

86

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

Now consider100’s place [Pass 3] :

802 2 24 45 66 170 75 90

2 24 45 66 75 90 170 802

Hence, we get the sorted elements :

2 24 45 66 75 90 170 802

NOTE :- The elements that come first in sequence is placed first in the array.

Highest no.of digits = no. of passes

EXAMPLE :- 170 45 75 90

Then, 170 is placed first instead of 90 [1’s place]

 90 75

i.e : 170 45

are :

Elements 170 90 45 75

ALGORITHM :-

First address of first record

R store address of rear record pocket F

store address of front record pocket

Step 1 : Start

Step 2 : Input N elements

Step 3 : Repeat thru st for j = 1, 2 N

Step 4 : Repeat for i = 1, 29 [for pockets]

 F[i]r[i] Null

87

SUBJECT CODE : 3330704

SUBJECT : DATA STRUCTURE

Step 5 : C

first

[C is the address of

current record]

D d

Next a[C]

If (r(D) = Null)

Then

R(D) F(D)

Else

A(R[D] C)

R[D] C

A[C] Null

C Next

C

Step 6 : P 0

Repeat while (F[P] = Null)

[P is the temporary index value]

P P + 1 First

F [P]

Repeat for I = P + 1, P + 2 9

If (R [I] <> Null)

A(PREV) F[I]

Else

R[I] PREV

Step 7 : End

C PROGRAM

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

clrscr();

int a[10][10],r,c,i,n,b[5],temp;

printf("\nEnter size of array : ");

scanf("%d",&n);

88

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

printf("\n");

for(r=0;r<10;r++)

{

for(c=0;c<10;c++)

a[r][c]=10;

}

for(i=0;i<n;i++)

{

printf("Enter elements %d:",i+1);

scanf("%d",&b[i]);

r=b[i]/10;

c=b[i]%10;

a[r][c]=b[i];

}

printf("\nSorted Array :\n");

for(r=0;r<10;r++)

{ for(c=0;c<10;c++)

{ for(i=0;i<n;i++)

{ if(a[r][c]==b[i]) {

printf("\n\t");

printf("%d",a[r][c]);

}

}

}

}

getch();

}

89

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

OUTPUT

HASHING :

A new data structure called a Hash table , whose search can be independent of the number of

entries in a table.

For this, the position of a particular entry in the table is determined by the values of key for

that entry, this can be achieved by HASHING FUNCTION.

A Hash tables are a common data structures, they consists of an array and a mapping. The

hash functions maps the key in to hash values. It can stored in hash table and must have keys.

The hash function maps of a key of an item to Hash value, and that hash value is used as an

index in to the hash table for that item, this allow item to be inserted and located quickly.

Hash function OR Hash table method :

A function that transforms a key in to a table index is called a HASH FUNCTION.

IF H is a hash function and key is a m then H(m) is called a Hash of key m and is the index

at which a record with the key m should be placed.

There are different Hash table methods to build various Hash functions, such as :

90

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

1. THE DIVISION METHOD :

- This approach is to divide a key value of record by an appropriate number then to use

the remainder of division as the relative address for the records, such hash function is

known as the division remainder method or simply the DIVISION method.

- The hash function is defined as :

H(X) = X mode m + 1

- It has been found that division method is best when table size is prime.

2. THE MID-SQUARE METHOD :

- The another hash function, known as the mid square method, the key is multiplied by

itself and the middle few digits of the square are used as the index.

- If the square is considered as a decimal number, the table size must be a power of 10,

whereas if it is considered as a Binary number, the table size must be a power of 2/

- Example :

Key value (squared values) Relative address

 Key values (position 7-10 from right side)

123456789 15241578750190521 8750

987654321 975461055789971041 5789

123456790 15241578997104100 8997

000000472 ` 00000000000222784 0000

91

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

- Unfortunately this method does not yield uniform hash values and does not

perform as well as previous technique

3. THE FOLDING METHOD :

- The folding method breaks up a key into several segments that are added or exclusive

ordered together to form a hash values.

- For example, suppose that the internal bit string representation of a key is 01011

10010 10110 and that 5 bits are allowed in the index, the 3 binary string 01011,

10010, 10010, 10110 are exclusive ordered to produce 01111, which is 15 as binary

integer.

COLLISION RESOLUTION TECHNIQUE :

- COLLISION :A failed attempt to insert an item in a table, because there is

alreadyan item in the slot when the new item hashed to.

THERE ARE DIFFERENT METHODS FOR SOLVING THE PROBLEM OF

COLLISION :

(1). Open addressing

(2). Chaining

(3). Re-Hashing

(4). Using neighboring slot

(5). Quadratic probing

(6). Random probing

92

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

(1) - Linear Probing :

- This is one of the simplest method. When collision occurs, look in the neighbouring

slot in the table, if slot is empty, it calculates the new address extremely quickly.

- This technique will do sequencial search for the new address for collide record, so this

method searches in a straight line, so it is called linear probing.

- DRAWBACK : When the table becomes full, there is tendency towards clustering.

- Clustering means, two keys that hash in two in to different values compete with each

other in successive rehashes, is called clustering.

(2) - Random Probing :

- This method generates a random sequence of positions rather than an ordered

sequence in Case of linear probing.

(3) - Quadratic Probing :

- If there is collision at hash address H, this method probes the location at h+1, h+4,

h+9…..for

I = 1,2,3……

- A quadratic probes suffer from a different and more subtle clustering problem. This

occurs because all the keys that hash to a particular cell follow the same sequence in

trying to find a vacant space.

- The secondary clustering is not a serious problem, but Quadratic probing is not used

to eliminate secondary clustering.

93

SUBJECT CODE : 3330704 SUBJECT : DATA STRUCTURE

(4) - Rehashing (Double hashing) :

- Re-hashing technique use a secondary hashing operation when there is a collision. If

there is a further collision, we re-hash until an empty slot is found.

- The re-hashing function can either be a new function or a reapplication of the original

one.

- Using re-hashing to eliminate primary as well as secondary clustering.

94

