
Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 1

Unit-4

4.1 Basics of inheritance

o Types of inheritance:

 single

 Multiple

 Multilevel

 Hierarchical

 Hybrid inheritance

o concept of method overriding

o extending class, super class, subclass

o dynamic method dispatch

o Object class

4.2 creating package, importing package, access rules for packages, class

hiding rules in package

4.3 defining interface, inheritance on interface, implementing interface,

multiple inheritance using interface

4.4 abstract class and final class

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 2

 Inheritance
• It is process by which objects of one class can use properties of objects of another

class.

• The mechanism of deriving a new class from old class is called inheritance.

• Inheritance provides reusability of code.

• Java class can be reused in several ways by creating new class.

• Reusing the properties of existing class called inheritance.

Old class New class

▫ Base class

▫ Super class

▫ Parent class

▫ Derived class

▫ Sub class

▫ Child class

• Inheritance allows subclasses to inherit all variable and methods of their parent

class.

• Object have no super class.

Types of inheritance :

1) Single inheritance (only one super class)

2) Hierarchical inheritance(1 super class, many subclasses)

3) Multilevel inheritance (derived from a derived class)

4) Multiple inheritance(several super class)

5) Hybrid Inheritance

[Java does not directly support multiple inheritance and hierarchical inheritance

which is actually supported in c ++, but it is implemented using interface.]

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 3

Syntax for defining a subclass:

class subclassname extends superclassname

{

 Variable section;

 method section;

}

extends :it is keyword.it signifies that properties of superclassname are extended to

the subclassname

• So, subclass will now contain its own variables and methods as well as those of

super class.

• It occurs when we want to add some more properties to an existing class without

actually modifying it.

• Sub class can use the members of super class but super class can not access

subclass’s members.

1. Single inheritance

 Only one super class

 Every class has one and only one direct super class.

 If class inherits only a single class, is called single inheritance.

class A

{

}

class B extends A

{

}

Example:

class A // super class

{

 int i;

}

A

B

Single inheritance

Super class

Sub class

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 4

class B extends A //sub class

{

 void display()

 {

 System.out.println("i="+i);

 }

}

class Single

{

public static void main(String args[])

{

 B b1=new B();

 b1.i=7;

 b1.display();

}

}

Output:

 i=7

2. Multiple inheritance

• One class extends properties of Several super classes.

• Java does not support this directly.

Here class C uses properties of class A and class B at same level.

Ex:

 class A

{

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 5

}

class B

{

}

class C extends A ,B //invalid not supported in java

{

}

3. Multilevel inheritance

 New class is derived from derived class.

 Java uses mainly in building its class library.

Ex: class A

{

}

class B extends A

{

}

class C extends B

{

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 6

}

Here class C can use properties of class B and class B uses the properties of class

A. So class C can use properties of A and B.

Example of Multilevel inheritance
class A //super class

{

 int i;

}

class B extends A //intermediate super class which extends A

{

 int j;

 void display ()

 {

 System.out.println ("i in class B="+i);

 }

}

class C extends B //sub class C which extends B

{

 void sum ()

 {

 System.out.println ("sum of i and j in C ="+ (i + j));

 }

}

class Multilevel

{

public static void main (String args[])

{

 B b1=new B ();

 b1.j=5;

 System.out.println ("j in B="+b1.j);

 C c1=new C ();

 c1.i=3;

 c1.j=4;

 c1.sum();

}

}

Output:

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 7

 J in B=5

sum of i and j in C=7

4. Hierarchical inheritance

 one super class, many subclasses.

 Many classes extends one sub class.

 Many programming problems can be featured on one level shared by other below

level.

Ex:

class A

{

}

class B extends A

{

}

class C extends A

{

}

Class D extends A

{

}

Here, class A extended by class B, C, and D.

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 8

Example of Hierarchical inheritance

class A //super class

{

 int i;

}

class B extends A // sub class of A

{

 int j;

 void display()

 {

 System.out.println("sum of i and j in B="+ (i +j));

 }

}

class C extends A //subclass of B

{

 int k;

 void sum()

 {

 System.out.println("sum of i and k in C ="+ (i+k));

 }

}

class Hierarchical

{

public static void main(String args[])

{

 B b1=new B();

 b1.i=4;

 b1.j=5;

 b1.display();

 C c1=new C();

 c1.i=3;

 c1.k=5;

 c1.sum();

 }

}

5. Hybrid inheritance

 We can inherit properties of several classes at same level. If you are using only

classes then this is not allowed in java, but using interfaces it is possible to have

implement hybrid inheritance in java.

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 9

 In above diagram, it is a combine form of single and multiple inheritances. Since

java doesn’t support multiple inheritances, the hybrid inheritance is also not

possible.

 Case 1: Using classes: If in above figure B and C are classes then this inheritance

is not allowed as a single class cannot extend more than one class (Class D is

extending both B and C).

 Case 2: Using Interfaces: If B and C are interfaces then the above hybrid

inheritance is allowed as a single class can implement any number of interfaces in

java.

 Hierarchical inheritance is different than hybrid inheritance. Hierarchical

inheritance is possible to have in java even using the classes alone itself as in this

type of inheritance two or more classes have the same parent class or in other

words a single parent class has two or more child classes, which is quite possible

to have in java.

Below program of hybrid inheritance will not execute.

class A

{

 public void methodA()

 {

 System.out.println("Class A methodA");

 }

}

class B extends A

{

 public void methodA()

 {

 System.out.println("Child class B is overriding inherited method A");

 }

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 10

 public void methodB()

 {

 System.out.println("Class B methodB");

 }

}

public class C extends A

{

 public void methodA()

 {

 System.out.println("Child class C is overriding the methodA");

 }

 public void methodC()

 {

 System.out.println("Class C methodC");

 }

}

class D extends B,C // it gives errorwe cans

{

 public void methodD()

 {

 System.out.println("Class D methodD");

 }

}

}

class multiple

{

 public static void main(String args[])

 {

 D obj1= new D();

 obj1.methodD();

 obj1.methodA();

 }

}

In the above program class B and C both are extending class A and they both

have overridden the methodA(), which they can do as they have extended the class A.

But since both have different version of methodA(),compiler is confused which one

to call when there has been a call made to methodA() in child class D (child of both

B and C, it’s object is allowed to call their methods), this is a ambiguous situation

and to avoid it, such kind of scenarios are not allowed in java. In C++ it’s allowed.

We can implement hybrid inheritance using interfaces.

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 11

interface A

{

 public void methodA();

}

interface B extends A

{

 public void methodB();

}

interface C extends A

{

 public void methodC();

}

//hybrid inheritance, class D uses both B and C interface

class D implements B,C

{

 public void methodA()

 {

 System.out.println("MethodA");

 }

 public void methodB()

 {

 System.out.println("MethodB");

 }

 public void methodC()

 {

 System.out.println("MethodC");

 }

}

class hybrid

{

 public static void main(String args[])

 {

 D obj1= new D();

 obj1.methodA();

 obj1.methodB();

 obj1.methodC();

 }

}

Output

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 12

MethodA

MethodB

MethodC

 Nesting of methods

A method can be called by using only its name by another method of same class

is nesting of methods.

Example

class Nesting

{ int m,n;

 Nesting(int x , int y)

 { m=x;

 n=y;

}

 int largest () //defining a method

 {

 if(m >= n)

 return(m);

 else

 return(n);

}

void display ()

{

 int large=largest (); //calling a method

 System .out. println (“large value”+large);

 }

}

class Nest_test

{

public static void main(String args[])

{

Nesting n=new Nesting (50 , 40);

n .display ();

}

}

output : 50

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 13

 Sub class constructor and super keyword
• Constructor which is defined in subclass is called sub class constructor.

• It is used to create instance variable of both sub class and super class.

• super keyword is used.

• We can use super in two ways:

▫ super is used to invoke constructor method of super class.

▫ super is used to access variable of super class which have same name as in

sub class.

▫ We can call method of super class from subclass.

Condition to use super keyword

1. super may only be used with in sub class constructor method.

2. Call to super class constructor must appear as first statement sub class

constructor.

3. The parameter in super call must match the order and type of instance variable

declared in super class.

First use of super:

Constructor in sub (derived) class uses super to pass values that are required by

super (base) class constructor.

Example

class Room //super class

{

 int length;

 int width;

 Room (int x , int y) //super class constructor

 {

 length=x;

 width=y;

 }

 int area ()

 {

 return (length * width) ;

 }

}

class BedRoom extends Room //sub class

{

 int height;

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 14

 BedRoom(int x ,int y, int z) //sub class constructor

 {

 super(x , y); // pass values to super class

 height=z;

 }

 int volume ()

 {

 return (length * width * height);

 }

}

class Inheritance

{

public static void main (String args[])

{

BedRoom room1=new BedRoom (10 , 10 , 12);

int area1=room1.area (); //super class method

int vol =room1.volume(); //sub class method

System .out .println (“area1=” + area1);

System .out. println (“volume=” + vol);

}

}

Output :

area1= 100

volume = 120

Second use of super:

We can access variable of super class if sub class and super class have variables of

same name.

class A

{

 int i ;

}

class B extends A

{ int i;

 B (int a , int b)

 {

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 15

super . i =a;

 i =b;

 }

 void show()

 {

 System . out .println (“i in super =“ +super .i) ;

 System . out .println(“i in sub =“ +i);

}

}

class SuperDemo

{

public static void main (String args[])

{

 B subob= new B(1, 2);

 subob . show();

}

}

Output:

i in super=1

i in sub=2
Third use of super:

class A
{

 void show1()

 {
 System . out .println("from super class method ");

 }

}
class B extends A

{

 void show()
 {

 super.show1 ();

 System . out .println("from sub class method ");
 }

}
class SuperDemo1

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 16

{
public static void main (String args[])

{

 B obj=new B();
 obj.show();

}

}

Output:

from super class method

from sub class method

 Method overriding (Function Overriding)

• Methods defined in super class is inherited and used by objects of the subclass.

• If we want an object to respond to same method but having different behavior

when method is called.

• It is possible by defining a method in sub class that has same name, same

arguments, and same return type as in method in the super class.

• When method in super class is called, the method define in subclass is invoked

and executed instead of one in super class this is called overriding of method.

• When same method name, same argument & same return type) is used in sub

class and super class, is called method overriding.

• We can overload methods in same class.

• In this case, Method in sub class overrides the method in super class.

Note:

• Method overloading can be done in same class.

• Method overriding can be done in different class. When super class and subclass

are used (when inheritance is used).

Example of method overriding

class SuperClass

{

 void display()

 {

 System .out .println (“Super Class”);

 }

 void show(int x)

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 17

 {

 System. out .println (“ x in super class=“+x);

 }

}

class SubClass extends SuperClass

{

 void display() //method same as in super class

 {

 System .out .println (“ Sub Class”);

 }

 void show(int x) //method same as in super class

 {

 System. out .println (“ x in sub class =“+x);

 }

}

class MethodOverRide

{

public static void main(String args[])

{

 SubClass subo = new SubClass();

 subo . display();

 subo . display();

 subo .show(5);

 //SuperClass supero =new SuperClass();

 //Supero . display();

 //Supero . show(10);

}

}

Output: Sub class

 Sub class

 x in sub class= 5

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 18

Example of method overriding using subclass constructor, super and this

class Super1

{

 int x;

 Super1 (int x)

 {

 this.x =x;

 }

 void display()

 {

 System .out .println (“super x=“+x);

 }

}

class Sub extends Super1

{

 int y=10;

 Sub (int x, int y)

 {

super(x);

 this. y =y; // if put this statement in comment line, y has value 10.

 }

 void display()

 {

 System .out .println (“super x=“+x);

 System .out .println (“sub y=“+y);

}

}

class Override

{

public static void main(String args[])

{

Sub s1=new Sub(100,200);

s1.display();

}

}

Output: super x=100

 sub y=200

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 19

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 20

Runtime polymorphism or Dynamic Method Dispatch

 It is a process in which a call to an overridden method is resolved at runtime

rather than compile-time.

 In this process, an overridden method is called through the reference variable of a

super class. The purpose of the method to be called is based on the object being

referred to by the reference variable.

Up casting

 When reference variable of Parent class refers to the object of Child class, it is

known as up casting.

For example

class A

{

……..

}

class B extends A

{

…….

}

In main method class,we can do as follow:

 B b1=new B();

A a=new B(); //upcasting

Or

B b1=new B();

A a1;

A1=b1; //upcasting

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 21

Example: class A

{

 void callme()

 {

 System.out.println("Inside A's callme method");

 }

}

class B extends A

{

 void callme()

{

 System.out.println("Inside B's callme method");

 }

}

class C extends A

 {

 void callme()

{

 System.out.println("Inside C's callme method");

 }

}

class Dispatch

 {

 public static void main(String args[])

{

 A a = new A(); // object of type A

 B b = new B(); // object of type B

 C c = new C(); // object of type C

 A r; // obtain a reference of type A

 r = a; // r refers to an A object

 r.callme(); // calls A's version of callme

 r = b; // r refers to a B object

 r.callme(); // calls B's version of callme

 r = c; // r refers to a C object

 r.callme(); // calls C's version of callme

 }

}

Output: Inside A's callme method

Inside B's callme method

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 22

Inside C's callme method

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 23

 Object class in Java

 The Object class is the parent class of all the classes in java by default. In other words,

it is the topmost class of java.

 The Object class is beneficial if you want to refer any object whose type you don't

know.

 Note: parent class reference variable can refer the child class object, know as up casting.

Let's take an example, there is getObject() method that returns an object but it can be of

any type like Employee,Student etc, we can use Object class reference to refer that

object. For example:

Object obj=getObject();//we don't what object would be returned from this method

The Object class provides some common behaviors to all the objects such as object can

be compared, object can be cloned, object can be notified etc.

 Methods of Object class

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 24

No. Method Description

1 public final Class getClass()

returns the Class class object of this object.

The Class class can further be used to get

the metadata of this class.

2 public int hashCode() returns the hashcode number for this object.

3 public boolean equals(Object obj) compares the given object to this object.

4
protected Object clone() throws

CloneNotSupportedException

creates and returns the exact copy (clone) of

this object.

5 public String toString()
returns the string representation of this

object.

6 public final void notify()
wakes up single thread, waiting on this

object's monitor.

7 public final void notifyAll()
wakes up all the threads, waiting on this

object's monitor.

8
public final void wait(long timeout)

throws InterruptedException

causes the current thread to wait for the

specified milliseconds, until another thread

notifies (invokes notify() or notifyAll()

method).

9

public final void wait(long

timeout,int nanos) throws

InterruptedException

causes the current thread to wait for the

specified miliseconds and nanoseconds,

until another thread notifies (invokes

notify() or notifyAll() method).

10
public final void wait() throws

InterruptedException

causes the current thread to wait, until

another thread notifies (invokes notify() or

notifyAll() method).

11
protected void finalize() throws

Throwable

is invoked by the garbage collector before

object is being garbage collected.

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 25

Package
 OOP’s main feature is its ability to reuse the code which is already created.

 If we want to use classes from other programs without physically copying them

into program under development, then packages are used.

 Packages are grouping of variety of classes and/or Interfaces together.

 Packages are conceptually similar as “class libraries “of other languages.

 Packages act as “containers” for classes.

 Java packages are classified into two types

o Java API packages or system defined package

o User defined packages

Advantage of package

 The classes contained in the packages of other program can be easily reused.

 In packages, classes can be unique compared with classes in other packages.

Means two classes in two different packages can have the same name.

 Packages provide a way to “hide “ classes thus preventing other programs or

packages from accessing

 Packages also provide a way of separating designing from coding. It is possible

to change implementation of any method without affecting the rest of the design.

 Java API Packages

(System defined API packages or Standard Java packages)

No. Package name Description

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 26

1 java.lang • Language support classes

• These are classes that java compiler itself uses and

therefore they are automatically imported

• They include classes for primitive types, math functions

,threads and exceptions.

2 java.util • Language utility classes

• It includes Vector , hash tables, random numbers.

3 java.io • Input/output support classes

• They provide facilities for the input and output of data

4 java.net • Network communication supporting classes

• Classes for communicating with local computers as

well as internet servers

5 java.awt • (Abstract window toolkit)

• Set of classes for implementing graphical user

interface.

• They include classes for windows, buttons, lists, menus

and many more

6 java. applet Classes for creating and implementing applets.

Naming convention of package

• Package should begin with lower case letter.

• Every package name must be unique to make best use of packages. Duplicate

name will cause errors on internet.

• Java suggests to use domain name as prefix to preferred package name.

E.g. : cbe.psg.mypackage

Where cbe denotes city name

 psg denotes organization name

Creating package

• To create a package first declares the name of package using package

keyword.

Syntax: package packagename;

• This must be first statement in source file.

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 27

 Example:

 package firstPackage; //package declaration

 public class First Class //class declaration

 {

 //body of class

 }

• Save that file as FirstClass.java in directory firstPackage

• .class files must be located in directory firstPackage.

 Steps to create user-defined package

Question: How to create user-defined package?

Five steps:

1) Declare the package at the beginning of file using ,

 Syntax :package packagename ;

2) Define the class that is to be put in the that package and declare it public.

3) Create a subdirectory under the directory where the all main source files are

stored.

4) Store the listing file as the classname.java file in subdirectory you have

created.

5) Compile that file. This will create .class file in subdirectory.

Java also support concept of package hierarchy .This allows to group related

classes into a package and then group related packages into a larger package.

 E.g. package firstPackage.secondPackage;

Note: store this package in sub directory

 firstPackage\ secondpackage.

• A java package can have more than one class definitions in that case only

one class may be declared as public and that class name with .java extension

is the source file name.

• When a source file with more than one class definition is compiled .Java

creates independent .class files for those classes.

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 28

Importing packages:

We can import any package (system package or user defined package) using

import keyword.

Two approaches:

1) Use fully class sname:

Syntax: import java.Packagename.classname; ex: import java.awt.Color;

 2) Use short path by putting *:

 Syntax : import java.Packagename.*; ex: import java.awt.*;

Accessing package:

import statement is used to search a list of packages for a particular class.

Syntax:

 import package1 [.package2] [.package3].classname;

 Package1

 (top level) package2

 package3

 Classname

• Multiple import statements are allowed.

• * indicates that the compiler should search this entire package hierarchy

when it encounters a class name.Drawback of that approach is that it is

difficult to determine from which package a particular member came.

Example:

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 29

File1: saved in D:\javapro\package1\ClassA.java

package package1;

public class ClassA

{

public void displayA ()

{

 System.out.println (“Class A”);

}

}

Save this class in file with name ClassA.java in package1

File2: saved in D:\javapro\PackageTest.java

import package1.classA;

class PackageTest

{

public static void main (String args [])

{

ClassA objA=new ClassA ();

objA. displayA ();

}

}

Output:

Class A

 This code should be saved as Packagetest.java and then compiled.

 In this ClassA imported from package1.The source file and compiled file would

be saved in directory of which package1 was a sub directory.

 source file should be named ClassA.java and stored in subdirectory package1

and the resultant class ClassA. Class will be stored in same directory.

 When the Packagetest 1 is run, java looks for the file Packagetest1.class and

loads it using class loader .now interpreter knows that it also needs code in the

file ClassA. Class and loads it as well.

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 30

File3: saved in D:\javapro\package2\ClassB.java

package package2;

public class ClassB

{

protected int m=10;

public void displayB()

{

System.out.println(“class B”);

System.out.println(“m=”+m);

}

}

Importing classes from other packages

Here two classes are imported from two different packages.

ClassA from package1 & ClassB from package2

File4: saved in D:\javapro\Packagetest2.java

import package1.ClassA; //imports ClassA from package package1

import package2.*; //imports all public class of package package2

class Packagetest2

{

public static void main(String args[])

{

ClassA objA=new ClassA ();

ClassB objB=new ClassB ();

objA. displayA ();

objB. displayB ();

}

}

Output:

Class B

Class A

M=10

Chapter -4 Inheritance, packages and interfaces Java Programming(3350703)

Government Polytechnic, Ahmedabad Page 31

Sub classing an imported class:

File5: saved in D:\javapro\Packagetest3.java

import package2.classB;

class ClassC extends ClassB //extends ClassB from

package2

{

int n=20;

void displayC()

{

System.out.println(“Class c”);

System.out.println(“m=“+m);

 //protected variable from package2’s class ClassB

System.out.println(“n=“+n);

}

}

class PackageTest3

{

public static void main(String args[])

{

ClassC objc =new ClassC();

objc. displayB ();

objc. displayC ();

}

}

Output:

Class B

m=10

Class C

m=10

n=10

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 32

 Two packages contain Classes with identical names

 package pack1; | package pack2;

 |

public class Teacher | public class Courses

{……………} | {……………}

 |

public class Student | public class Student

{……………} | {……………}

import pack1.*;

import pack2.*;

Student stu1; // in valid

pack1.Student student1; //OK

pack2.Student student2; //OK

Teacher t1; // OK

Courses c1; //OK

Adding a class to a package

1. Place the package statement ------ package p1;

2. Define the class and make it public

3. Store this file as B.java file under the directory p1;

4. Compile B.java file. This will create B.class and place it in the directory p1.

 Java source file can have only one class declared as public .This is because of

the restriction that the file name of file should be same as name of public class with

.java extension.

Create a package with multiple public class

1. Declare the name of package

2. Create a subdirectory with this name under the directory where main source

files are stored.

3. Create a class that are to be placed in package in separate source

file and declare the package statement : package packagename;

at the top each source file

4. Switch to the sub directory created earlier and compile each source file .when

completed, the package would contain .class files of all the source files.

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 33

 Hiding classes

 When we want to import a package using

 import packagename.*;

 then all public classes are imported.

 If we want to hide classes from accessing from outside of the package ,then

such classes should be declared “not public”.

Ex. : package p1;

 public class X

 {

 //body of class

 }

 class Y

 {

 //body of class

 }

import p1.*;

X objx; // valid, class X is available here

Y objy; // in valid class y is not available here

 Class path

 The compiler and the interpreter searches for the classes in the current

directory and the directory, which consists JDK class files.

 All JDK class files and the current directory are automatically set in your class

path.

 But when we want save our class file any other directory in place of JDK ‘s

bin folders, then we have to set class path to run that class file.

 A class path is a list of directories, which compiler and interpreter use to

search for the respective class file.

 We can set path in following three ways :

1. Javac –d classpath filename (in command prompt)

2. set path=“c:\program files\java\jdk1.2\bin”;

(type above line in notepad and save with name autoexec.bat in directory where

you want save your java programs)

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 34

3. Globally path set:

Access protection for a classes of package using

Visibility controller
(Visibility modifier / Access modifiers /Access specifiers)

 It may be necessary in some situation to restrict the access certain variables and

methods from outside the class

 We may not like to the objects of a class directly alter the value of a variable or

access a method .We can do this by applying visibility modifiers.

 Modifiers provides different levels of protection.

 Java provides three types of modifiers:

 public , private and protected

 Access

 Modifier

Access

Location

public protected Friendly

 (default)
private

Same class Yes Yes Yes Yes

Subclass in same

package
Yes Yes Yes No

Other classes in

same package
Yes Yes Yes No

Subclass in other

packages
Yes Yes No No

Non-subclasses in

other package
Yes No No No

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 35

Note:

 public protected friendly(default) private

1) Public access

• Any variable or method is visible to entire class in which it is defined.

• A variable or method declared as public has the widest possible visibility

and accessible everywhere.

• It can also used in different packages.

Example:

 public int no;

 public void sum()

 {

 }

2) friendly (default) Access

• When no access modifier is specified, the member defaults to a limited

version of public accessibility known as friendly level of access.

• A variable or method declared as friendly (default) makes them visible to

only in that package where it is defined.

• It is not visible to the outside of package.

• Difference between public and friendly:

Public : it makes field visible in all classes ,regardless of their package.

friendly : it makes field visible only in the same package , but not in

other package.

3) protected access

• The visibility level of protected lies between the public and friendly access.

• protected modifiers makes the fields visible not only to all classes and

subclasses in same package but also to subclasses in other package.

• Non-subclasses in other package can not access “protected”.

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 36

Ex: protected void finalize()

 {

 }

4) private access

• private fields enjoy highest degree of protection.

• private fields are accessible only within their own class.

• They cannot be inherited by subclasses and therefore not accessible in

subclasses.

• A method declared as private behaves like a method declared as final.

Summary :

Public: available everywhere

Friendly: available only in same package

Protected: available in same package and subclass in another package

Private: available in only that class in which it is defined

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 37

Example for access rules in package

Create below directory structure and learn to use access modifiers in

package.

Directory Structure:

package program

|

|---------------------------------------same_package

| |-------Demo.java (1)

| |-------TestDemo.java (2)

|--- TestDemo_out_pack.java (4) |-------Test_extends_demo.java (3)

|--- TestDemo_extend_out_pack.java (5)

.

1) Create Demo.java file and save it in following path :

E:\GPA\package program\same_package\Demo.java

//package same_package; //use this line for file 4 and 5

public class Demo

{

 static protected int a=10;

 private int b=20;

 public int c=30;

 void show1()

 {

 System.out.println("----from Demo class show method----");

 System.out.println("a="+a);

 System.out.println("b="+b);

 System.out.println("c="+c);

 System.out.println("-----------------");

 }

}

Compile : javac Demo.java

2) Create TestDemo.java file and save it in following path :

E:\GPA\package program\same_package\Test Demo.java

//no need to import class in same package

class TestDemo

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 38

{

 public static void main(String arg[])

 {

 Demo d=new Demo();

d.show1();

//show1 has default access,in other class in same package,accessible

System.out.println("a="+d.a);

//a has protected access,in other class of same package,accessible

//System.out.println("b="+d.b);

//b has private access, out side class, not accessible

System.out.println("c="+d.c);

//c has public access,in other class in any package,accessible

}

}

Compile : javac TestDemo.java

Run : java TestDemo

Output : ----from Demo class show method-----

a=10

b=20

c=30

a=10

c=30

3) Create Test_extends_demo.java file and save it in following path :

E:\GPA\package program\same_package\ Test_extends_demo.java

class Test_extends_demo extends Demo

{

public static void main(String arg[])

{

Demo d=new Demo();

d.show1();

 //show1 has default access,in any class in same package,accessible

System.out.println("a="+d.a);

//a has protected access,in sub class of same package ,accessible

//System.out.println("b="+d.b);

//b has private access, out side class, not accessible

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 39

System.out.println("c="+d.c);

//c has public access,in any class in any package,accessible

 }

}

Compile : javac Test_extends_demo.java

Run : java Test_extends_demo

Output : ----from Demo class show method-----

a=10

b=20

c=30

a=10

c=30

4) Create Test_extends_demo.java file and save it in following path :

E:\GPA\package program\ TestDemo_out_pack.java

To access Demo.class in this program we have to uncomment following line from

Demo.java file.

import same_package.*;

class TestDemo_out_pack

{

 public static void main(String arg[])

 {

 Demo d=new Demo();

 //d.show1();

//show1 has default access,in class out side of package,not accessible

 //System.out.println("a="+d.a);

//a has protected access,in class out side of package ,not accessible

 //System.out.println("a="+d.b);

//b has private access, out side class, not accessible

 System.out.println("c="+d.c);

//c has public access,in any class in any package,accessible

 }

}

Compile : javac TestDemo_out_pack.java

Run : java TestDemo_out_pack

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 40

Output : c=30

5) Create Test_extends_demo.java file and save it in following path :

E:\GPA\package program\ TestDemo_extend_out_pack.java

To access Demo.class in this program we have to uncomment following line from

Demo.java file.

import same_package.Demo;

class P extends Demo

{

void call()

{

System.out.println("a="+a); // a has protected access ,Demo is extended

here ,accessible in subclass out side package ,acessible

}

}

class TestDemo_extend_out_pack

{

public static void main(String arg[])

{

 P d=new P();

 d.call();

 //d.show1();

//show1 has default access,in sub class out side of package,not accessible

 //System.out.println("a="+d.a);

//a has protected access,in sub class out side of package directly ,not accessible

 //System.out.println("a="+d.b);

//b has private access, out side class, not accessible

 System.out.println("c="+d.c);

//c has public access,in any class in any package,accessible

 }

}

Compile : javac TestDemo_extend_out_pack.java

Run : java TestDemo_extend_out_pack

Output : a=10

c=30

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 41

Interface: Multiple Inheritance

Why interface is needed?

• Java does not support multiple inheritances directly.

• Means, Java class cannot have more than super class.

Ex:

 class C extends B,A

 {

 }

• But large number of real life applications requires the use of multiple

inheritances where we can inherit methods and properties from several

distinct classes.

• Normally for a method to be called from one class to another, both classes

need to be present at compile time, javac checks to ensure that the method

signatures are same.

• But when there is hierarchy of class functionality gets higher and higher

complicated. Interfaces are designed to avoid this problem.

• Java provides an alternate approach interface to support the concept of

multiple inheritance.

• They are designed to support dynamic method resolution at time

• Java class cannot be a subclass of more than one super class.

• But it can implement more than one interface, this enabling us to create

classes that build upon other classes without problems created by multiple

inheritance.

A

C

B

B

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 42

Interface
• Interface is basically a kind of class.

• Interface contains methods and variable but it defines only abstract method

and final variable.

• Interface do not specify any code to implement methods(method does not

have body) .

• Variables are constant (value can’t be changed).

• Interface defines :

 What a class do , but not how it does it

• It is responsibility of class that implements an interface, to define code for

implementation of these methods.

Syntax to define interface:

 access interface interfaceName

 {

 variable declaration;

 method declaration;

 }

• interface is keyword.

• access: is access modifier, it must be either public or not used any other

(friendly).

Declaration of variable :

 static final type variablename = value;

Note:

• All variables are declared as constants.

• It is allowed to declared variable without final and static ,because all

variables in interface are treated as constants.

Method declaration in interface:

 returntype methodname (parameter-list);

Note:

• Method declaration will contain only a list of methods (without body) like

abstract methods.

• Code of that method will implements by class which use that method.

• Method declaration ends with semicolon.

• Methods that implement an interface must be declared public.

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 43

Example : interface Item

 {

 static final int code = 123; // code is constant .

 String name= “Fan”; // name is constant.

 void display () ; //method without body

 }

• If no specifier is used then interface is only available to other members of

package in which it is declared.

• If public access modifier used, then available to other package also.

• If no specifier is used then interface is only available to other members of

package in which it is declared.

• If public access modifier used, then available to other package also.

Interface inheritance or How to extend interface?
• Interface can be extended, means it can be sub inherited from interface.

• New sub interface will inherit all member of super interface in same manner

as class.

 interface interface2 extends interface1

 {

 body of interface2

 }

Ex:
interface ItemConstant

{

 int code =1001;

 String name=“Fan”;

}

interface Item1 extends ItemConstant

{

 void display();

}

interface Item extends ItemConstant , Item1

{

 }

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 44

• While extending interfaces, sub interface can’t define methods declared in

super interface (because it’s not class).

• When two or more interfaces are extended by one interface, they are

separated by comma.

• Interface can only extend interface but cannot extend classes.

• If a class that implements an interface does not implement all methods of

interface, then class becomes an abstract class, can’t be instantiated.

Note:

• extends keyword : class extends class

• extends keyword : interface extends interface

• implements keyword : class implements interface

How to implement an interface to a class?

• Interfaces are act as super class whose properties are inherited by classes.

• Syntax:

class classname implements InterfaceName

 {

 body of class name

 }

Or

class classname extends SuperClass implements interface1,interface2….

 {

 body of classname

 }

Note :

We can define method with body in interface but it works in jdk1.8 .Earlier jdk

version’s (like jdk 1.0 to jdk 1.7) don’t support method with body in interface.

We can define method as follow

interface m1

{ default void show(){

//code

}

 }

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 45

 (c) (d)

Example (implement one interface in a class)

interface Area // interface defined

{

 final static float PI=3.14F;

 float compute(float x, float y);

}

// interface implemented

class Rectangle implements Area

{

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 46

 public float compute (float x , float y)

 {

 return (x * y);

 }

}

class Circle implements Area

{

 public float compute (float x , float y)

 {

 return (PI* x * x);

 }

}

class InterfaceTest

{

public static void main(String args[])

 {

 // class object

 Rectangle rect = new Rectangle ();

 Circle cir=new Circle();

 // interface object

 Area a ;

 a = rect ;

 System.out.println (“Area of rectangle =“ + a. compute(10f,20f));

 a=cir;

 System.out.println (“Area of circle =“ + a. compute(10f,0f));

 }

}

Output:

Area of rectangle=200.0

Area of circle=314.0

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 47

Accessing interface variable

• The constant values will be available to any class that implements the

interface.

interface A

{

 int m=10;

}

class B implements A

{

 int x=m;

}

Implementing multiple inheritance
 write a program which performs multiple inheritance

Example-1:

interface Sports

{

 float sportWt=6.0f;

 void putWt();

}

interface Display

{

 void display();

}

class Student

{

 int rollno;

 void getNo(int n)

 {

 rollno=n;

 }

 void putNo()

 {

 System.out.println("Roll No="+rollno);

 }

}

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 48

class Test extends Student

{

 float part1,part2;

 void getmarks(float m1,float m2)

 {

 part1=m1;

 part2=m2;

 }

 void putmarks()

 {

 System.out.println("Marks obtained");

 System.out.println("Part1="+part1);

 System.out.println("part2="+part2);

 }

}

// multiple interface and class are accessed by one class

class Results extends Test implements Sports,Display

{

 float total;

 public void putWt()

 {

 System.out.println("Sports Wt="+sportWt);

 }

 void display()

 {

 total=part1+part2+sportWt;

 putNo();

 putmarks();

 System.out.println("Total score="+total);

 }

}

class Hybrid

{

public static void main(String args[])

{

 Results stu1=new Results();

 stu1.getNo(1234);

 stu1.getmarks(2.1f,33.0f);

 stu1.display();

}

}

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 49

Example-2: multiple inheritance using interface

interface A1

{

 int marks1=90;

}

interface A2

 {

int marks2=80;

 }

interface A3 extends A1,A2

 {

int marks3=70;

void sum();

 }

class Result implements A3

{

int total;

public void sum()

{

 total=marks1+marks2+marks3;

 System.out.println(“Total marks=”+ total);

}

}

class Multi_Inheri

{

public static void main(String args[])

{

Result r=new Result ();

r.sum ();

}

}

Output :

Total marks=240

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 50

Example-3: Write a program that demonstrates interface inheritance. Interface

P12 inherits from both P1 and P2. Each interface declares one constant and one

method. The class Q implements P12. Instantiate Q and invoke each of its

methods. Each method displays one of the constants

interface P1

{

 int i=20;

 void ishow();

}

interface P2

{

 int j=20;

 void jshow();

}

interface P12 extends P1,P2

{

 int k=40;

 void kshow();

}

class Q implements P12

{

 public void ishow()

 {

 System.out.println("from P1 :"+i);

 }

 public void jshow()

 {

 System.out.println("from P2 :"+j);

 }

 public void kshow()

 {

 System.out.println("from P12 :"+k);

 }

}

class Interfaceinheritance

{ public static void main (String args[])

 {

 Q obj=new Q();

 obj.ishow();

 obj.jshow();

 obj.kshow();

 } }

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 51

Output

from P1 :20

from P2:30

from P12 :40

Write a program which uses ‘date’ package to display tomorrow’s date.

package date;

import java.util.*;

public class A

{

public void display()

{

String months[] = {"Jan", "Feb", "Mar", "Apr" ,"May", "Jun", "Jul", "Aug"

,"Sep", "Oct", "Nov", "Dec"};

Calendar c1 = Calendar.getInstance();

System.out.print("Today's Date: ");

System.out.print(months[c1.get(Calendar.MONTH)] + "/");

System.out.print(c1.get(Calendar.DATE));

System.out.println("/" + c1.get(Calendar.YEAR));

System.out.print("Today's Date: ");

System.out.print(months[c1.get(Calendar.MONTH)] + "/");

System.out.print(c1.get(Calendar.DATE) + 1);

System.out.println("/" + c1.get(Calendar.YEAR));

}

}

import date. A;

import java.util.Calendar;

class Date_disp

{

public static void main(String args[])

{

A t1=new A();

t1.display();

}

}

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 52

Abstract class and methods

• final keyword prevents method overriding. final makes method protected

means it can’t be extended. Java also allows us to exactly opposite to above

one.

• If we want method must always be redefined in subclass, to make overriding

compulsory.

• abstract (modifier) keyword is used to make overriding compulsory.

• abstract keyword can be used with class and methods.

Ex:

abstract class Shape

 {

 abstract void draw();

 }

• Abstract methods are referred as sub classer responsibility because they have

no implementation specified in the super class.Subclass must override them,

it cannot simply use the version defined in super class.

• Abstract Method in class does not have body.

 Syntax: abstract type name (parameter-list);

• If a class contains one or more abstract methods, it should be declared as

abstract class.

• Any subclass of an abstract class must either implement all of the abstract

methods in the super class, or be itself declared abstract.

• Abstract class has both abstract (without body) and concrete methods (normal

method which have body).

• Conditions to use abstract:

1. We cannot use abstract classes to initiate objects directly.

 Shape s=new Shape();

2. The abstract methods of an abstract class must be redefined in its

subclass.

3. We cannot declare abstract constructor or abstract static methods.

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 53

Example:

abstract class A

{

 abstract void callme (); //abstract method(without body)

// concrete method are still allowed in abstract class

 void callmeToo() //concrete method(with body)

 {

 System . out .println(“this is concrete method”);

 }

}

class B extends A

{

 void callme()

 { System. out .println(“B’s implementation of call me”); }

}

class AbstractDemo

{

public static void main(String args[])

{

 B b1=new B();

 // A a1=new A();

 // invalid, because we cannot create object of abstract class.

 A a1;

 a1=b1;

 b1.callme();

 b1.callmeToo();

 a1.callme());

}

}

Output:

B’s implementation of call me

this is concrete method

B’s implementation of call me

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 54

Example:

abstract class A

{

 abstract void sum (int a,int b);

 abstract void sub (int a ,int b);

 abstract void mul (int a,int b);

}

abstract class B extends A

{

B()

{

System.out.println("”);

}

 void sum(int i,int j)

 {

 int sum=i+j;

 System.out.println("sum="+sum);

 }

 void sub(int i,int j)

 {

 int sub=i-j;

 System.out.println("sub="+sub);

 }

}

class C extends B

{

 void mul(int x,int y)

 {

 int ans=x*y;

 System.out.println("multiplication="+ans);

 }

}

class AbstractDemo1

{

public static void main(String args[])

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 55

{

 C c1=new C();

 c1.sum(10,20);

 c1.sub(10,5);

 //c1.mul(10,20);

 B b1;

 b1=c1;

 b1.mul(10,20);

}

}

Output :

Sum=30

Sub=5

Multiplication=200

Write a java program which declares one abstract class called Shape which has

three subclasses say Triangle, Rectangle, and Circle. Define one method area(

)in the abstract class and override this area() in these three subclasses to

calculate for specific object i.e. area() of Triangle subclass should calculate

area of triangle etc. Same for Rectangle and Circle.

abstract class Shape

{

 abstract void area (double val1,double val2); //abstract

method(without body)

}

class Rectangle extends Shape

{

 public void area(double l,double b)

 {

 double ans1=l*b;

 System.out.println("area of rectangle ="+ans1);

 }

}

class Circle extends Shape

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 56

{

 public void area(double r,double b)

 {

 double ans1=Math.PI*r*r;

 System.out.println("area of circle ="+ans1);

 }

}

class Triangle extends Shape

{

 public void area(double b,double h)

 {

 double ans1=0.5*b*h;

 System.out.println("area of Triangle ="+ans1);

 }

}

class AbstractShape

{

 public static void main(String args[])

 {

 Rectangle r=new Rectangle();

 r.area(10,5);

 Circle c=new Circle();

 c.area(10,0);

 Triangle t=new Triangle();

 t.area(20,10);

 }

}

Output:

area of rectangle =50.0

area of circle=314.1592653589793

area of Triangle=100.0

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 57

Interface Vs Abstract class

 Interface Abstract class

1 Method of interface are implicitly

abstract (without body) and cannot have

implementations.

Methods of abstract class can

have abstract method (without body)

and concrete methods (with body

statement).

2 Interface contains only final variables.

because Variable declared in interface is

by default final.

Abstract class may contain non-

final variables.

3 Members of interface are public by

default.

A abstract class can have the different

modifiers of class members like private,

protected, etc.

4 interface should be implemented using

keyword “implements”;

abstract class should be extended using

keyword “extends”.

5 An interface cannot provide any code at

all, much less default code.

An abstract class can provide complete

code, default code, and/or just stubs that

have to be overridden.

6 An interface can extend another Java

interface only.

An abstract class can extend another

Java class and implement multiple Java

interfaces.

7 Interface cannot extend any type of

class.

A Java class can extend only one

abstract class.

8 Interface is absolutely abstract and

cannot be instantiated

A Java abstract class also cannot be

instantiated, but can be invoked if main

() exists.

9 If all the various implementations of

code share the method signature then an

interface works best.

If the various implementations of code

are all of a kind and share a common

status and behavior usually an abstract

class work best.

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 58

Nested Inner class

• It is possible to define class within another class , that is known as nested

class.

• Nested class has access to member including private member of class in

which it is nested.but that class can’t access to member of nested class.

• Two types of nested class,

▫ static

▫ Non-static

• Nested classes are particularly helpful in handling events in applets.

Static nested class:

• Class has static modifier specified.

• It access member of its enclosing class through an object.

• It cannot refer member of its enclosing class directly.

Non-static nested class:

Most important type of nested class is inner class.

• Inner class is non static nested class.

• It can access all variables and method of its outer class.

• Inner class is fully within the scope of its enclosing class.

Example:

class Outer

{

 int out_x =100;

 void test ()

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 59

 {

 Inner inobj =new Inner();

 inobj . display();

 // display(); gives error

 }

 class Inner

 {

 int y = 10;

 void display()

 {

 System . out. println(“display : outer_x=“+ out_x);

 }

}

 void show()

 {

 System . out. println(“y=“+ y); //invalid

 }

}

class InnerClassDemo

{

public static void main (String args[])

{

Outer outobj =new Outer ();

// Inner inobj =new Inner ();

outobj . test ();

//outobj . show (); //error, method can’t use variable y of Inner class

//outobj. display (); // error, it is method of Inner class

}

}

Output: out_x=100

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 60

Recursion
• Recursion is a function that allows method to call itself.

• When recursive method calls itself new local variables and parameter are

removed from the stack and execution resumes.

• A recursive call does not make a new copy of method but arguments are new.

• Advantage: it is used to create simple and clearer version of several

algorithm.

• We must have if statement that returns method without recursive call.

• If you don’t use if statement for recursive call recursive method goes in the

infinite loop.

class Sum

{

int sumn(int i)

{

 int n;

 if (i==1)

 return 1;

 else

 n=sumn (i-1)+ i ;

 return n;

}

}

class RecursionDemo

{

public static void main(String args[])

{

 Sum s=new Sum();

int total=s . sumn(5) ;

System . out .println(“sum of 1 to 5=” + total);

}

}

Output: sum of 1 to 5= 15

Chapter-4 Inheritance, packages and interface

By: Dhara Kanzariya Page 61

Write a program to find factorial of given no. Using recursion.

class Factorial

{

int fact(int i)

{

 int n;

 if (i==1)

 return 1;

 else

 n=fact (i-1)* i ;

 return n;

}

}

class Fact1

{

public static void main(String args[])

{

int no=Integer.parseInt(args[0]);

 Factorial s=new Factorial();

int total=s . fact(no) ;

System . out .println("factorial of=" + no + “ is “ + total);

}

}

javac Fact1.java

java Fact1 6

 Output: factorial of 6 is 720

	Up casting
	package pack1; | package pack2;

