
Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 1

Chapter -6

File Handling

Introduction:

When we use variables and array for storing data inside the programs. We face two

Problems:

1) The data is lost either when a variable goes out of scope or when the

program is terminated. The storage is temporary.

2) It is difficult to handle large volumes of data using variables and arrays.

We can overcome these problems by storing data into secondary storage

devices. We can store data using concept of files. Data stored in file is often called

persistent data.

 A file is collection of related records placed area on the disk. A record is

composed of several fields. Field is a group of characters.

 Storing and managing data using file is known as file processing which

includes tasks such as creating files, updating files and manipulation of data.

 Reading and writing of data in a file can be done at the level of bytes or

characters or fields depending on the requirement of application.java provides

capabilities to read and write class object directly.

 The process of reading and writing objects is called serialization.

Concept of stream

 In file processing, inputrefers to the flow of data into a program and output

means the flow of data out of a program.

 Input to a program may come from the keyboard, mouse, memory, disk a

network or another program.

 Output from a program may go to the screen, printer, memory disk, network

or another program.

 Input and output share certain common characteristics like unidirectional

movement of data, treating data as a sequence of bytes or characters and

support to sequential access to data.

 Java uses concept of stream to representordered sequence of data, a common

characteristics shared by all input/output devices.

 A stream presents uniform, easy to use, object oriented interface between the

program and the input/output devices.

 A stream in java is a path along which data flows (like pipe along which

water flows). It has source (of data) and destination (for that data).Both the

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 2

source and destination may be physical devices or programs or other streams

in same program.

 The concept of sending data from one stream to another has made streams in

java a powerful tool for file processing.

 We can build a complex file processing sequence using a series of simple

stream operation. This feature is used to filter data along the pipeline of

streams so that we obtain data in desired format.

 Java stream classified into basic type as follow:

 Input stream: it extracts (i.e. reads) data from the source (file) and sends it to

the program.

 Output stream: it takes data from the program and sends (i.e. writes) it to the

destination (file).

Stream classes

 The java.io package contains a large number of stream classes that provide

capabilities for processing all types of data. The classes may be categorized into two

groups based on the data type on which they operate.

1. Byte stream classes that provides support for handling I/O operations on bytes.

2. Character streamclasses that provide support for managing I/O operation on

characters

. These groups mayfurther be classified based on their functions. Byte stream and

character stream classes contain specialized classes to deal with input and output

Stream

Output Stream Input Stream

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 3

operations independently on various type of devices. We can also cross-group the

streams based on the type of source or destination they from or write to. The source

(or destination) may be memory, a file or a pipe.

1) Byte stream classes

 Byte stream classes have been designed to provide functional features for

creating and manipulating streams and files reading and writing bytes.

 Since the steams are unidirectional, they can transmit bytes in only one

direction and, therefore,

 Java provides two kinds of byte stream classes:

1) input stream classes

2) output stream classes.

1) Input Stream Classes

 Input stream classes that are used to read 8-bit bytes include super class

known as InputStream and a number of subclasses for supporting various

input-related functions. Figure shows class hierarchy of input stream.

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 4

 The super class InputStream is an abstract class, and, therefore, we cannot

create instances of this class.Rahter,we must use the subclasses that inherit from this

class. TheInputStream class defines method for performing input functions such as

 Reading bytes

 Closing streams

 Marking position in streams

 Skipping ahead in a stream

 Finding the number of bytes in a stream

Summary of InputStream Methods

 Method Description

1 read() Reads a byte from the input stream

2 read(byte b[]) Reads an array of bytes into b

3 read(byte b[],intn,int m) Reads m bytes into b starting from nth byte

4 available() Gives number of bytes available in the input

5 skip(n) Skips over n bytes from the input stream

6 reset() Goes back to the beginning of the stream

7 close() Closes the input stream.

Note that the class DataInputStream extends FilterInputStream and implements

the interface DataInput. Therefore, the DataInputStream class implements the

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 5

methods described in DataInput in addition to using the method of InputStream

class. The DataInput interface contains the following method.

 readShort()

 readInt()

 readLong()

 readFloat()

 readUTF()

 readDouble()

 readLine()

 readChar()

 readBoolean()

2) OutputStream Classes

 Output stream classes are derived from the base class OutputStream as shown in

figure. Like InputStream, the OutputStream is an abstract class and therefore we

cannot instantiate it. The several subclasses of the OutputStream can be used for

performing the output operations.

The OutputStream includes methods that are designed to perform the following

task:

 Writing bytes

 Closing stream

 Flushing stream

Summary of output stream methods

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 6

The DataOutputStream, a counterpart of DataOutputStream, implements

the interface DataOutputStream and, therefore,implements the following

method contained in DataOutput interface.

 writeShort()

 writeInt()

 writeLong()

 writeFloat()

 writeUTF()

 writeDouble()

 writeBytes()

 writeBytes()

 writeChar()

 writeBoolean()

2) Character stream classes

Character stream classes were not a part of the language when it was released

in 1995. They were added later when the version 1.1 was announced.

Character streams can be used to read and write 16-bit Unicode characters.

Like byte streams, there are two kinds of character stream classes, reader

classes and writer stream classes.

1) Reader Stream Classes

 Reader stream classes are designed to read character from the files. Reader

class is the base class for all other classes in this group as shown in figure.

 These classes are functionally very similar to the input stream classes, except

input stream use bytes as their fundamental unit of information, while reader

stream use characters.

 Method Description

1 write() Writes a byte to the output stream

2 write(byte b[]) Writes all bytes in the array b to the output stream

3 write(byte b[],intn,int m) Writes m bytes from array b starting from nth byte

4 close() Close the output stream

5 flush() Flushes the output stream

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 7

 The Reader class contains method they are identical to those available in the

InputStream class, except Reader is designed to handle characters (see Table

6.1) Therefore, reader classes can perform all the functions implemented by

the input stream classes.

2)Writer Stream Classes

 Like output stream classes, the writer stream classes are designed to perform

all output operations on files. Only difference is that while output stream classes

are designed to write bytes, the writer stream classes are designed to write

characters.

 The Writer class is an abstract class which acts as a base class for all other

writer stream classes as shown in figure. This base class provides support for all

output operations by defining method that are identical to those in

OutputStreamclass(see Table 6.2)

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 8

Using streams

 We have briefly various types of input and output stream classes used for

handling both the 16-bit characters and 8-bit bytes. Although all the classes are

known as i/o classes, not all of them are used for reading and writing operations

only. Some perform operations such as buffering, filtering, data conversion,

counting and concatenation while carrying out I/O tasks.

 As pointed out earlier, both the character stream group and the byte stream group

contain parallel pairs of classes that perform the same of operations but for the

different data type.

 List of Tasks and Classes Implementing Them

 Task Character Stream

Class

 Byte Stream Class

Performing input operations Reader InputStream

Buffering input BufferedReader BufferdInputStream

Keeping track of line numbers LineNumberReader LineNumberInputStream

Reading from an array CharArrayReader ByteArrayInputStream

Translating byte stream into a

character stream

InputStreamReader (none)

Reading from files FileReader FileInputStream

Filtering the input FilterReader FilterInputStream

Pushing back characters/bytes PushbackReader PushbackInputStream

Reading from a pipe PipedReader PipedInputStream

Reading from a string StringReader StringBufferInputStream

Reading primitive types (none) DataInputStream

Performing output operations Writer OutputStream

Buffering output BufferedWriter BufferedOutputStream

Writing to an array CharArrayWriter ByteArrayOutputStream

Filtering the output FilterWriter FilterOutputStream

Translating character stream

into a byte stream

OutputStreamWriter (none)

Writing to a file FileWriter FileOutputStream

Printing values and objects PrintWriter PrintStream

Writing to a pipe PipedWriter PipedOutputStream

Writing to a string String Writer (none)

Writing primitive types (none) DataOutputStream

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 9

Other useful classes

The java.io package supports many other classes for performing certain specialized

functions. They include among others:

 RandomAccessFile :

The RandomAccessFile enables us to read and write bytes, text and

java data types to any location in a file. This class extends object class and

implements DataInputand DataOutputinterface

 StreamTokenizer :

The class StreamTokenizer, a subclass of object can be used for

breaking up a stream of text from an input text file into meaningful pieces

called tokens. The behaviour of the StreamTokenizerclass is similar to that

of StringTokenizerclass (of java.util package) that breaks string into its

component tokens.

Using the file class

The java.io package includes a class known as the File class that provides support

for creating files and directories. The class includes several constructors for

instantiating the File objects.

File class provides methods for operations like:

 Creating a file

 Opening a file

 Closing a file

 Deleting a file

 Getting the name of a file

 Getting the size of a file

 Checking the existence of a file

 Renaming a file

 Checking whether the file is writable

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 10

 Checking whether the file is readable

Input/output Exceptions

When creating files and performing I/O operations on them, the system may

generate I/O related exceptions. The basic I/O related exception classes and their

functions:

 I/O exception class Function

1 EOFException Signals that an end of file or end of stream

has been reached unexpectedly during input

2 FileNotFoundException Informs that a file could not be found

3 InteruuptedIOException Warns that an I/O operations has been

interrupted

4 IOException Signals that an I/O exception of some sort

has occurred

Creation of files:

If we want to create and use a disk file, we need to decide the following about

the file and its intended purpose:

 Suitable name for the file.

 Data type to be stored.

 Purpose (reading, writing, or updating).

 Method of creating the file.

A filename is a unique string of character that helps identify a file on the disk.

The length of a filename and the characters allowed are dependent on the OS on

which the java program is executed. A filename may contain two parts, a primary

name and an optional period with extension. Example:

Input.data salary

Test.doc student.txt

Inventory rand.dat

Data type is important to decide the type of file stream classes to be used for

handling the data. We should decide whether the data to be handled is in the form of

characters, bytes or primitive type.

The purpose of using a file must also be decided before using it. For example,

weshould know whether the file is created for reading only,or both the operations.

As we know, for using a file, it must be opened first. This is done by creating a

file stream and then linking it to the filename. A file stream can be defined using the

class of Reader/InputStreamfor reading data andWriter/OutputStreamfor

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 11

writing data. The common stream classes used for various i/o operations given in

table . The constructors of stream classes may be used to assign the desired

filenames to the Stream objects.

There are two ways of Italianizing the file Streamobjects. All of the constructors

require that we provide the name of the file either directly or indirectly by giving a

file object that has already assigned a file name. The following code segment

illustrates the use of direct approach.

FileInputStreamfis;

try

{

//Assign the filename to the file stream object

fis = new FileInputStream (“test.txt”);

........

}

catch (IOException e)

...........

...........

The indirect approach uses a file object that has been Italianized with the desired

filename. This is illustrated by the following code

.............

Source/destination Characters

 Read Write

Memory CharArrayReader CharArrayWriter

File FileReader FileWriter

Pipe PipedReader PipedWriter

Source/destination Bytes

 Read Write

Memory ByteArrayInputStream ByteArrayoutputStream

File FileInputStream FileoutputStream

Pipe PipedInputStream PipedoutputStream

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 12

.............

File inFile;

InFile = new file (“test.txt”);

FileInputStreamfis;

try

{

//give the value of the file object

//to the file stream object

Fis=new FileInputStream (inFile);

..............

}

catch (......)

...............

................

The code above includes five tasks:

 Select a filename.

 Declare a file object.

 Give a selected name to the file object declared.

 Declare a file stream object.

 Connect the file to the stream object.

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 13

Example-1:

Write a program which creates file and writes byte into that file.

import java.io.*;

public class WriteByte

{

 public static void main(String args[])

 {

 File f1=new File(“input.txt”); \\ to create new file

 FileOutputStreamoutfile = null;

 byte cities[] = {'I',’ ‘,’'L','O','V','E',’ ‘,'I','N','D','I’,’A'};

 try

 {

 outfile = new FileOutputStream(f1);

 outfile.write(cities);

 }

 catch(IOException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 System.out.println("Write Byte");

 System.out.println("Thank You...!!!");

 }

}

Output :

Write Byte

Thank You!!!

Program-2

import java.io.*;

importjava.util.*;

public class WriteByte_1

{

 public static void main(String args[])

file://///to

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 14

 {

 FileOutputStreamoutfile = null;

 //String s=args[0]; // to input string from command line

 Scanner sc=new Scanner(System.in);

 String s=sc.nextLine();

 byte b1[] = s.getBytes();

 try

 {

 outfile = new FileOutputStream("in.txt");

 outfile.write(b1);

 }

 catch(IOException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 System.out.println("Write Byte");

 System.out.println("Thank You...!!!");

 }

}

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 15

Example-2:

Write a program which reads byte from file.

import java.io.*;

public class ReadingByte

{

 public static void main(String args[])

 {

 FileInputStreaminfile = null;

 int b;

 try

 {

 infile = new FileInputStream("input.txt");

 while((b = infile.read()) != -1)

 {

 System.out.println((char)b);

 }

 infile.close();

 }

 catch(IOException e)

 {

 System.out.println("Sorry..!! File Not Found...!!!");

 }

 }

}

Output :

I LOVE INDIA

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 16

Reading/writing characters

As pointed out earlier, subclass of Reader and Writer implement streams that

can handle characters. The two subclasses used for handling characters in files

are FileReaderand FileWriter.

The concept of using file streams and file object for reading and writing

characters in program is illustrated in fig:

Example-3

Write a program which creates file and writes characterinto that file.

import java.io.*;

classCharacterWrite

{

 public static void main(String args[])

 {

 File f1=new File("input1.txt");

 FileWriterfw = null;

 try

 {

 fw=new FileWriter(f1);

 fw.write("ahmedabad \n");

 fw.write(" baroda \n");

 fw.close();

 }

 catch(FileNotFoundException e)

 {

 System.out.println("Sorry..!! File Not Found...!!!");

 }

 catch(IOException e)

 {

 System.out.println(e.getMessage());

 }

 System.out.println(“ write operation done!!”);

 }

}

Output:

write operation done

Example-4:

Write a program which reads character from file.

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 17

import java.io.*;

classReadchar

{

 public static void main(String args[])

 {

 FileReaderfr =null;

 try

 {

 fr = new FileReader("input.txt");

 intch;

 while((ch = fr.read()) != -1)

 {

 System.out.print((char)ch);

 }

 System.out.println("Reading complete");

 fr.close();

 }

 catch(FileNotFoundException e)

 {

 System.out.println("Sorry..!! File Not Found...!!!");

 }

 catch(IOException e)

 {

 System.out.println(e.getMessage());

 }

 }

}

Output:

ahmedabad

 baroda

Reading complete

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 18

Example -5:

Write a program to read one byte at a time from a file and copy it into another

fileimmediately.

import java.io.*;

classCopyByte

{

 public static void main(String args[])

 {

 try

 {

 byte b=0;

 FileInputStreaminfile = new FileInputStream("in.txt");

 FileOutputStreamoutfile = new FileOutputStream("out.txt");

 while(byteread != -1)

 {

 b = (byte)infile.read();

 outfile.write(b);

 }

 System.out.println("Byte Copied From in.txt to out.txt FIle ");

 }

 catch(FileNotFoundException e)

 {

 System.out.println("Sorry..!! File Not Found...!!!");

 }

 catch(IOException e)

 {

 System.out.println(e.getMessage());

 }

 }

}

Output :

Byte Copied From in.txt to out.txt File

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 19

Example -6:

Write a program to merge two files in third file.

import java.io.*;

classFileMergeDemo

{

 public static void main(String args[])

 {

 try

 {

 FileInputStream file1 = new FileInputStream("File1.txt");

 FileInputStream file2 = new FileInputStream("File2.txt");

 SequenceInputStream file3 = new SequenceInputStream(file1, file2);

 BufferedInputStream br1 = new BufferedInputStream(file3);

 BufferedOutputStream br2 = new BufferedOutputStream(System.out);

 intch;

 while((ch = br1.read())!=-1)

 {

 br2.write((char)ch);

 }

 br1.close();

 br2.close();

 file1.close();

 file2.close();

 System.out.println("Merge Two File Sucessfully ");

 }

 catch(IOException e)

 {

 System.out.println("Sorry..!! File Not Found...!!!");

 }

 }

}

Output

Vpmpldrp

Chapter-6 File Handling Java Programming (3350703)

Government Polytechnic, Ahmedabad Page 20

 Write an application to rename a file. Use the renameTo() method of File to

accomplish

/*this task. The first command line argument is the old filename and the second is

the newfilename.

*/

import java.io.*;

classFileRenameDemo

{

 public static void main(String args[])

 {

 File f1 = new File(args[0]);

 File f2 = new File(args[1]);

 f1.renameTo(f2);

 System.out.println("Rename File " +f1+" To "+f2+" Sucessfully ");

 }

}

Output :

javacFileRenameDemo.java

javaFileRenameDemo input1.txt abc.txt

