
Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 1

Unit-3 JDBC

3.1 Client-Server Design: Two-Tier Database Design, Three-Tier Database Design

3.2 The JDBC API: The API Components, Database Creation, table creation using SQL

3.3 JDBC Database Example

3.4 JDBC Drivers

3.5 JDBC-ODBC Bridge

3.6JDBC-Advantages & Disadvantages

JDBC:
 JDBC stands for Java Database Connectivity.

 JDBC was developed by JavaSoft of Sun Microsystems.

 JDBC is a standard Java API for database-independent connectivity between the

Java programming language and a wide range of databases

 It defines interfaces and classes for writing database applications in Java by making

database connections. Using JDBC you can send SQL, PL/SQL statements to almost

any relational database.

 JDBC is a Java API for executing SQL statements and supports basic SQL

functionality. It provides RDBMS access by allowing you to embed SQL inside Java

code. Since nearly all relational database management systems (RDBMSs) support

SQL, and because Java itself runs on most platforms, JDBC makes it possible to

write a single database application that can run on different platforms and interact

with different DBMSs.

 Java Database Connectivity is similar to Open Database Connectivity (ODBC)

which is used for accessing and managing database, but the difference is that JDBC

is designed specifically for Java programs, whereas ODBC is not depended upon

any language.

In short JDBC helps the programmers to write java applications that manage these three

programming activities:

 Connect to a data source, like a database.

 Send queries and update statements to the database.

 Retrieve and process the results received from the database in answer to your query.

 JDBC Architecture

The JDBC API supports both two-tier and three-tier processing models for database

access.

1. Two-tier Architecture for Data Access or Two-tier database design

 In the two-tier model, a Java application talks directly to the data source.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 2

 This requires a JDBC driver that can communicate with the particular data source

being accessed.

 A user's commands are delivered to the database or other data source, and the results

of those statements are sent back to the user.

 The data source may be located on another machine to which the user is connected

via a network. This is referred to as a client/server configuration, with the user's

machine as the client, and the machine housing the data source as the server.

 The network can be an intranet, which, for example, connects employees within a

corporation, or it can be the Internet.

Three-tier Architecture for Data Access

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 3

 In the three-tier model, commands are sent to a "middle tier" of services, which then

sends the commands to the data source.

 The data source processes the commands and sends the results back to the middle

tier, which then sends them to the user.

 MIS directors find the three-tier model very attractive because the middle tier makes

it possible to maintain control over access and the kinds of updates that can be made

to corporate data.

 Another advantage is that it simplifies the deployment of applications. Finally, in

many cases, the three-tier architecture can provide performance advantages.

Figure 2: Three-tier Architecture for Data Access.

 Until recently, the middle tier has often been written in languages such as C or C++,

which offer fast performance. However, with the introduction of optimizing

compilers that translate Java byte code into efficient machine-specific code and

technologies such as Enterprise JavaBeans™, the Java platform is fast becoming the

standard platform for middle-tier development. This is a big plus, making it possible

to take advantage of Java's robustness, multithreading, and security features.

 With enterprises increasingly using the Java programming language for writing

server code, the JDBC API is being used more and more in the middle tier of a

three-tier architecture. Some of the features that make JDBC a server technology are

its support for connection pooling, distributed transactions, and disconnected

rowsets. The JDBC API is also what allows access to a data source from a Java

middle tier.

General JDBC Architecture

 The JDBC API supports both two-tier and three-tier processing models for database

access but in general JDBC Architecture consists of two layers:

o JDBC API: This provides the application-to-JDBC Manager connection.

o JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

 The JDBC API uses a driver manager and database-specific drivers to provide

transparent connectivity to heterogeneous databases.

 The JDBC driver manager ensures that the correct driver is used to access each data

source. The driver manager is capable of supporting multiple concurrent drivers

connected to multiple heterogeneous databases.

 Following is the architectural diagram, which shows the location of the driver

manager with respect to the JDBC drivers and the Java application:

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 4

Common JDBC Components:

 JDBC Product Components:
 JDBC has four Components:

 1. The JDBC API.

 2. The JDBC Driver Manager.

 3. The JDBC Test Suite.

 4. The JDBC-ODBC Bridge.

1. JDBC API:

 The JDBC API provides the facility for accessing the relational database from the

Java programming language.

 The API technology provides the industrial standard for independently connecting

Java programming language and a wide range of databases. The user not only

execute the SQL statements, retrieve results, and update the data but can also access

it anywhere within a network because of its "Write Once, Run Anywhere"

(WORA) capabilities.

 Due to JDBC API technology, user can also access other tabular data sources like

spreadsheets or flat files even in the heterogeneous environment.

 JDBC application programming interface is a part of the Java platform that have

included in Java Standard Edition (Java SE) and the Java Enterprise Edition (Java

EE) in itself.

 The latest version of JDBC 4.0 application programming interface is divided into

two packages

 i. java.sql

 ii. javax.sql.

2. JDBC Driver Manager:

 This interface manages a list of database drivers. Matches connection requests from

the java application with the proper database driver using communication sub

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 5

protocol.

 The first driver that recognizes a certain sub protocol under JDBC will be used to

establish a database Connection.

 Internally, JDBC DriverManager is a class in JDBC API. The objects of this class

can connect Java applications to a JDBC driver.

 DriverManager is the very important part of the JDBC architecture. The main

responsibility of JDBC DriverManager is to load all the drivers found in the system

properly.

 The Driver Manager also helps to select the most appropriate driver from the

previously loaded drivers when a new open database is connected.

 3: JDBC Test Suite:

 The function of JDBC driver test suite is to make ensure that the JDBC drivers will

run user's program or not.

 The test suite of JDBC application program interface is very useful for testing a

driver based on JDBC technology during testing period. It ensures the requirement

of Java Platform Enterprise Edition (J2EE).

4. JDBC-ODBC Bridge:

 The JDBC-ODBC Bridge, also known as JDBC type 1 driver is a database driver

that utilizes the ODBC driver to connect the database.

 This driver translates JDBC method calls into ODBC function calls. The Bridge

implements JDBC for any database for which an ODBC driver is available. The

Bridge is always implemented as the sun.jdbc.odbc

 Java package and it contains a native library used to access ODBC.

JDBC API

The JDBC API provides the following interfaces and classes:

 DriverManager: This class manages a list of database drivers. Matches

connection requests from the java application with the proper database driver using

communication sub protocol. The first driver that recognizes a certain sub protocol

under JDBC will be used to establish a database Connection.

 Driver: This interface handles the communications with the database server. You

will interact directly with Driver objects very rarely. Instead, you use a DriverManager

object, which manages objects of this type. It also abstracts the details associated with

working with Driver objects

 Connection: This interface with all methods for contacting a database. The

connection object represents communication context, i.e., all communication with

database is through connection object only.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 6

 Statement: You use objects created from this interface to submit the SQL

statements to the database. Some derived interfaces accept parameters in addition to

executing stored procedures.

 ResultSet: These objects hold data retrieved from a database after you execute an

SQL query using Statement objects. It acts as an iterator to allow you to move through

its data.

 SQLException: This class handles any errors that occur in a database

application.

Important classes and interfaces
The mechanism to communicate with database server exists as standard java classes.

• JDBC API has abstract java interfaces that allow to link to any number of databases.

• java.sql.DriverManager: handles the loading and unloading of appropriate

database drivers required to make the connection.

• java.sql.Connection: exposes the database to the developer ,and give connection as

an java component.

• java.sql.Statement:provides a container for executing SQL statement using

connection.

• java.sql.ResultSet: represent the data that returns form the database server to java

application.

1) Driver manager class
 The DriverManager class acts as an interface between user and drivers.

 It keeps track of the drivers that are available and handles establishing a

connection between a database and the appropriate driver.

 The DriverManager class maintains a list of Driver classes that have registered

themselves by calling the method DriverManager.registerDriver().

Commonly used methods of DriverManager class:

1)
public static void registerDriver(Driver

driver):

is used to register the given driver

with DriverManager.

2)

public static void deregisterDriver(Driver

driver):

is used to deregister the given

driver (drop the driver from the

list) with DriverManager.

3)
public static Connection

getConnection(String url):

is used to establish the connection

with the specified url.

4)
getConnection(String url,String

userName,String password):

is used to establish the connection

with the specified url, username

and password.

5)
getDrivers() Access a list of drivers present in

database

6)
println() Prints a message used in log

stream

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 7

2) Connection interface:

 A Connection is the session between java application and database.

 The Connection interface is a factory of Statement, PreparedStatement, and

DatabaseMetaData i.e. object of Connection can be used to get the object of

Statement and DatabaseMetaData.

 The Connection interface provide many methods for transaction management like

commit(),rollback() etc

 By default, connection commits the changes after executing queries.

 public Statement createStatement(): creates a statement object that can

be used to execute SQL queries.

public Statement createStatement(int

resultSetType,int resultSetConcurrency):

Creates a Statement object that

will generate ResultSet objects

with the given type and

concurrency.

 public void setAutoCommit(boolean

status):

is used to set the commit status.By

default it is true.

 public void commit(): saves the changes made since the

previous commit/rollback

permanent.

 public void rollback(): Drops all changes made since the

previous commit/rollback.

 public void close(): closes the connection and

Releases a JDBC resources

immediately.

3) Statement interface

 The Statement interface provides methods to execute queries with the database.

The statement interface is a factory of ResultSet i.e. it provides factory method to get

the object of ResultSet.

Commonly used methods of Statement interface:

public ResultSet executeQuery(String

sql):

 is used to execute SELECT query.

It returns the object of ResultSet.

 public int executeUpdate(String sql): is used to execute specified query,

it may be create, drop, insert,

update, delete etc.

 public boolean execute(String sql): is used to execute queries that may

return multiple results.

public int[] executeBatch(): is used to execute batch of

commands.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 8

4) ResultSet interface

 The object of ResultSet maintains a cursor pointing to a particular row of data.

Initially, cursor points to before the first row.

 It is used to fetch record from database for displaying in output.

 By default, ResultSet object can be moved forward only and it is not updatable

Commonly used methods of ResultSet interface

public boolean next(): is used to move the cursor to the one row next

from the current position.

public boolean previous(): is used to move the cursor to the one row

previous from the current position.

 public boolean first(): is used to move the cursor to the first row in

result set object.

 public boolean last(): is used to move the cursor to the last row in

result set object.

 public boolean absolute(int row): is used to move the cursor to the specified row

number in the ResultSet object.

public boolean relative(int row): is used to move the cursor to the relative row

number in the ResultSet object, it may be

positive or negative.

public int getInt(int columnIndex): is used to return the data of specified column

index of the current row as int.

public int getInt(String

columnName):

is used to return the data of specified column

name of the current row as int.

public String getString(int

columnIndex):

is used to return the data of specified column

index of the current row as String.

 public String getString(String

columnName):

is used to return the data of specified column

name of the current row as String.

PreparedStatement interface

 The PreparedStatement interface is a subinterface of Statement. It is used to execute

parameterized query.

Example of parameterized query:

String sql="insert into emp values(?,?,?)";

 We are passing parameter (?) for the values. Its value will be set by calling the setter

methods(for example setInt(),setString() methods) of PreparedStatement.

 Improves performance: The performance of the application will be faster if you

use PreparedStatement interface because query is compiled only once.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 9

How to get the instance of PreparedStatement?

 The prepareStatement() method of Connection interface is used to return the object

of PreparedStatement. Syntax:

public PreparedStatement prepareStatement(String query)throws SQLException

{

}

Methods of PreparedStatement interface

The important methods of PreparedStatement interface are given below:

Method Description

public void setInt(int paramIndex, int

value)

sets the integer value to the given

parameter index.

public void setString(int paramIndex,

String value)

sets the String value to the given

parameter index.

public void setFloat(int paramIndex, float

value)

sets the float value to the given

parameter index.

public void setDouble(int paramIndex,

double value)

sets the double value to the given

parameter index.

public int executeUpdate() executes the query. It is used for

create, drop, insert, update, delete

etc.

public ResultSet executeQuery() executes the select query. It returns

an instance of ResultSet.

Callable statement
• This interface extends PreparedStatement interface and provides support for both

input as well as output parameter.

• Callable statement represents the stored procedure.

• Stored procedure: it is a subroutine used by applications to access data from a

database.

 JDBC drivers

 JDBC driver is a software component that enables java application to interact with

database.

 It implements the defined interfaces in the JDBC API for interacting with your database

server.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 10

 For example, using JDBC drivers enable you to open database connections and to

interact with it by sending SQL or database commands then receiving results with

Java.

 The Java.sql package that ships with JDK contains various classes with their behaviours

defined and their actual implementations are done in third-party drivers. Third party

vendor’s implements the java.sql.Driver interface in their database driver.

JDBC Drivers Types:

JDBC driver implementations differ because of the wide variety of operating systems

and hardware platforms in which Java operates. Sun has divided the implementation

types into four categories, Types 1, 2, 3, and 4, which are explained below:

Type 1: JDBC-ODBC Bridge Driver:

 In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each

client machine. Using ODBC requires configuring on your system a Data Source

Name (DSN) that represents the target database.

 When Java first came out, this was a useful driver because most databases only

supported ODBC access but now this type of driver is recommended only for

experimental use or when no other alternative is available.

The JDBC-ODBC Bridge that comes with JDK 1.2 is a good example of this kind of

driver.

Type 2: JDBC-Native API:

 In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls which

are unique to the database.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 11

 These drivers typically provided by the database vendors and used in the same

manner as the JDBC-ODBC Bridge, the vendor-specific driver must be installed on

each client machine.

 If we change the Database we have to change the native API as it is specific to a

database and they are mostly obsolete now but you may realize some speed increase

with a Type 2 driver, because it eliminates ODBC's overhead.

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

Type 3: JDBC-Net pure Java:

 In a Type 3 driver, a three-tier approach is used to accessing databases. The JDBC

clients use standard network sockets to communicate with an middleware application

server.

 The socket information is then translated by the middleware application server into

the call format required by the DBMS, and forwarded to the database server.

 This kind of driver is extremely flexible, since it requires no code installed on the

client and a single driver can actually provide access to multiple databases.

 We can think of the application server as a JDBC "proxy," meaning that it makes

calls for the client application. As a result, we need some knowledge of the

application server's configuration in order to effectively use this driver type.

 Our application server might use a Type 1, 2, or 4 drivers to communicate with

the database, understanding the nuances will prove helpful.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 12

Type 4: 100% pure Java:

 In a Type 4 driver, a pure Java-based driver that communicates directly with

vendor's database through socket connection. This is the highest performance driver

available for the database and is usually provided by the vendor itself.

 This kind of driver is extremely flexible; you don't need to install special software on

the client or server. Further, these drivers can be downloaded dynamically.

 MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of

their network protocols, database vendors usually supply type 4 drivers.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 13

Which Driver should be used?

 If you are accessing one type of database, such as Oracle, Sybase, or IBM, the

preferred driver type is 4.

 If your Java application is accessing multiple types of databases at the same time,

type 3 is the preferred driver.

 Type 2 drivers are useful in situations where a type 3 or type 4 driver is not available

yet for your database.

 The type 1 driver is not considered a deployment-level driver and is typically used

for development and testing purposes only.

Why use JDBC

 Ease of programming

 You can write Java language instead of SQL statements

 Performance improvement

 Able to rollback to the save set of data

 Support batch updates

 Have many optional packages to use

JDBC : advantage and disadvantage

Advantage

 Provide Existing Enterprise Data

Businesses can continue to use their installed databases and access information

even if it is stored on different database management systems

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 14

 Simplified Enterprise Development

The combination of the Java API and the JDBC API makes application

development easy and cost effective

 Zero Configuration for Network Computers

No configuration is required on the client side centralizes software maintenance.

Driver is written in the Java ,so all the information needed to make a connection

is completely defined by the JDBC URL or by a DataSource object. DataSource

object is registered with a Java Naming and Directory Interface (JNDI) naming

service.

 Full Access to Metadata

The underlying facilities and capabilities of a specific database connection need

to be understood. The JDBC API provides metadata access that enables the

development of sophisticated applications.

Disadvantage

 The process of creating a connection, always an expensive, time-consuming

operation, is multiplied in these environments where a large number of users

are accessing the database in short, unconnected operations.

 Creating connections over and over in these environments is simply too

expensive.

 When multiple connections are created and closed it affects the performance.

 Database creation

 Structured Query Language (SQL) is a standardized language that allows you to

perform operations on a database, such as creating entries, reading content, updating

content, and deleting entries.

 SQL is supported by all most any database you will likely use, and it allows you to

write database code independently of the underlying database.

1. Create Database:

 The CREATE DATABASE statement is used for creating a new database. The

syntax is:

 SQL>CREATE DATABASE DATABASE_NAME;

Example: The following SQL statement creates a Database named EMP:

 SQL>CREATE DATABASE EMP;

2. Drop Database:

 The DROP DATABASE statement is used for deleting an existing database. The

syntax is:

 SQL>DROP DATABASE DATABASE_NAME;

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 15

Note: To create or drop a database you should have administrator privilege

on your database server. Be careful, deleting a database would loss all the data

stored in database.

3. Create Table:

 The CREATE TABLE statement is used for creating a new table. The syntax is:

SQL>CREATE TABLE table_name

(

 column_name column_data_type,

 column_name column_data_type,

 column_name column_data_type

...

);

Example: The following SQL statement creates a table named Employees with four

columns:

SQL>CREATETABLEEmployees

 (

 id INT NOT NULL,

 age INT NOT NULL,

 first VARCHAR(255),

last VARCHAR(255),

 PRIMARY KEY (id)

);

4. Drop Table:

 The DROP TABLE statement is used for deleting an existing table. The syntax

is:

 SQL> DROP TABLE table_name;

Example: The following SQL statement deletes a table named employees:

SQL> DROP TABLE Employees;

5. INSERT Data:

 The syntax for INSERT looks similar to the following, where column1, column2,

and so on represent the new data to appear in the respective columns:

 SQL>INSERT INTO table_name VALUES(column1, column2,...);

 Example:The following SQL INSERT statement inserts a new row in the

Employees database created earlier:

 SQL>INSERT INTOEmployeesVALUES(100,18,'Zara','Ali');

6. SELECT Data:

 The SELECT statement is used to retrieve data from a database. The syntax for

SELECT is:

 SQL> SELECT column_name, column_name,...

 FROM table_name

 WHERE conditions;

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 16

 The WHERE clause can use the comparison operators such as =, !=, <, >,

<=,and >=, as well as the BETWEEN and LIKE operators.

Example: The following SQL statement selects the age, first and last columns from the

Employees table where id column is 100:

SQL> SELECT first,last, age

 FROM Employees

 WHERE id =100;

7. UPDATE Data:

 The UPDATE statement is used to update data. The syntax for UPDATE is:

SQL> UPDATE table_name

 SET column_name = value, column_name = value,...

 WHERE conditions;

 The WHERE clause can use the comparison operators such as =, !=, <, >,

<=,and >=, as well as the BETWEEN and LIKE operators.

Example:The following SQL UPDATE statement changes the age column of the

employee whose id is 10

 SQL>UPDATEEmployeesSET age=20WHERE id=100;

8. DELETE Data:

 The DELETE statement is used to delete data from tables. The syntax for

DELETE is:

 SQL>DELETEFROM table_name WHERE conditions;

 The WHERE clause can use the comparison operators such as =, !=, <, >,

<=,and >=, as well as the BETWEEN and LIKE operators.

 Creating JDBC Application:

There are following six steps involved in building a JDBC application:

 Import the packages . Requires that you include the packages containing the

JDBC classes needed for database programming. Most often, using import

java.sql.* will suffice.

 Register the JDBC driver . Requires that you initialize a driver so you can open

a communications channel with the database.

 Open a connection . Requires using the DriverManager.getConnection() method

to create a Connection object, which represents a physical connection with the database.

 Execute a query . Requires using an object of type Statement for building and

submitting an SQL statement to the database.

 Extract data from result set . Requires that you use the

appropriate ResultSet.getXXX() method to retrieve the data from the result set.

 Clean up the environment . Requires explicitly closing all database resources

versus relying on the JVM's garbage collection.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 17

Steps to create JDBC application

There are 5 steps to connect any java application with the database in java using JDBC.

They are as follows:

 Register the driver class

 Creating connection

 Creating statement

 Executing queries

 Closing connection

1) Register the driver class

 The forName() method of Class class is used to register the driver class.

 This method is used to dynamically load the driver class.

Syntax :

public static void forName(String className)throws ClassNotFoundException

Example to register the OracleDriver class

Class.forName ("oracle.jdbc.driver.OracleDriver");

2) Create the connection object

 The getConnection() method of DriverManager class is used to establish connection

with the database.

Syntax:

 public static Connection getConnection(String url)throws SQLException

 public static Connection getConnection(String url,String name,String passwor

d) throws SQLException

Example to establish connection with the Oracle database

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:15

21:xe","system","password");

3) Create the Statement object:

 The createStatement() method of Connection interface is used to create statement.

 The object of statement is responsible to execute queries with the database.

Syntax

public Statement createStatement()throws SQLException

Example

Statement stmt=con.createStatement();

4) Execute the query

 The executeQuery () method of Statement interface is used to execute queries to the

database.

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 18

 This method returns the object of ResultSet that can be used to get all the records of

a table

Syntax

public ResultSet executeQuery(String sql)throws SQLException

Example

ResultSet rs=stmt.executeQuery("select * from emp");

 while(rs.next())

{

System.out.println(rs.getInt(1)+" "+rs.getString(2));

}

5) Close the connection object

 By closing connection object statement and ResultSet will be closed automatically.

 The close() method of Connection interface is used to close the connection.

Syntax

public void close()throws SQLException

Example

con.close();

Types of driver and its URL to use in program

RDBMS JDBC driver name URL format

MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname/ databaseName

Ms

access

sun.jdbc.odbc.JdbcOdbcDriver jdbc:odbc:databasename

ORACLE oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@hostname:port

Number:databaseName

DB2 COM.ibm.db2.jdbc.net.DB2Driver jdbc:db2:hostname:port

Number/databaseName

Sybase com.sybase.jdbc.SybDriver jdbc:sybase:Tds:hostname: port

Number/databaseName

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 19

Example to connect to the mysql database

For connecting java application with the mysql database, you need to follow 5 steps to

perform database connectivity.

In this example we are using MySql as the database. So we need to know following

informations for the mysql database:

1. Driver class: The driver class for the mysql database is com.mysql.jdbc.Driver.

2. Connection URL: The connection URL for the mysql database

is jdbc:mysql://localhost:3306/mydb

 where jdbc is the API, mysql is the database, localhost is the server name

on which mysql is running,

we may also use IP address, 3306 is the port number and mydb is the

database name. We may use any database, in such case, you need to replace the

mydb with your database name.

3. Username: The default username for the mysql database is root.

4. Password: Password is given by the user at the time of installing the mysql

database. In this example, we are going to use root as the password.

Let's first create a table in the mysql database, but before creating table, we need to

create database first.

1. create database mydb;

2. use mydb;

3. create table emp(id int(10),name varchar(40),age int(3));

Example to Connect Java Application with mysql database

In this example, mydb is the database name, root is the username and password.

import java.sql.*;

class MysqlCon

{

public static void main(String args[])

{

try

{

Class.forName("com.mysql.jdbc.Driver"); //step1

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 20

Connection con=DriverManager.getConnection(

"jdbc:mysql://localhost:3306/mydb","root","root"); //step2

//here mydb is database name, root is username and password

Statement stmt=con.createStatement(); //step3

ResultSet rs=stmt.executeQuery("select * from emp"); //step4

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

con.close(); //step5

}catch(Exception e){ System.out.println(e);}

}

}

To connect java application with the mysql database mysqlconnector.jar file is

required to be loaded.

download the jar file mysql-connector.jar

Two ways to load the jar file:

1. paste the mysqlconnector.jar file in jre/lib/ext folder

2. set classpath

1) paste the mysqlconnector.jar file in JRE/lib/ext folder:

Download the mysqlconnector.jar file. Go to jre/lib/ext folder and paste the jar file

2) set classpath:

There are two ways to set the class path:

a) Temporary :

Open command prompt and write:

C:>set classpath=c:\folder\mysql-connector-java-5.0.8-bin.jar;.;

b) Permanent path:

Go to environment variable then click on new tab. In variable name

write classpath and in variable value paste the path to the mysqlconnector.jar file by

appending mysqlconnector.jar;.; as C:\folder\mysql-connector-java-5.0.8-bin.jar;.;

http://www.javatpoint.com/src/jdbc/mysql-connector.jar

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 21

JDBC-ODBC bridge
 JDBC bridge is used to access ODBC drivers installed on each client machine.

Using ODBC requires configuring on your system a Data Source Name (DSN) that

represents the target database.

 Here we learn how to connect to Microsoft Access database. In order to make the

following code workable, we have to set up environment first. Following the steps

below:

Steps to connect using ODBC with MS Access databse

1. Click start go to Control PanelAdministrative ToolsData SourcesUser

DSN add

2. Select Microsoft access Driver Finish

3. Type Data source Name and press Select. Ok ok

The following example shows you how to follow the above steps to load a driver,

make a connection, use Statement and PreparedStatement, and insert and query

data.

 import java.sql.*;

 public class TestDBDriver

 {

 Connection con;

 Statement stmt;

 ResultSet rs;

 public static void main(String[] args)

 {

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection(jdbc:odbc:mydb, "", "");

stmt = con.createStatement();

 //create table

String sql = "create table book(bid int,bname varchar(20),author varchar(30)”;

 stmt.executeUpdate(sql);

//insert data in table

String inssql="INSERT INTO book VALUES (1001,’Java’, ’Balagurusamy’) ”;

stmt.executeUpdate(inssql);

 //display in output

String selsql="SELECT * from book”;

 rs = stmt.executeQuery(selsql);

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 22

 while (rs.next())

 {

 System.out.print(rs.getInt(“bid”)+”\t”) ;

 System.out.print(rs.getString(“bname”)+”\t”) ;

 System.out.print(rs.getString(“author”)+”\n”) ;

}

 stmt.close();

 con.close();

}

catch(Exception e)

{

 System.out.println(e);

}

}

}

 Program using createStatement()

Example-1Write a program to create database in using JDBC.

import java.sql.*;

public class CreateDB

{

public static void main(String args[])

{

try

{

Class.forName("com.mysql.jdbc.Driver");

Connection cn=DriverManager.getConnection("jdbc:mysql://localhost:3306","root","");

Statement stmt=cn.createStatement();

 String sql = "create Database mydb";

 stmt.execute(sql);

 System.out.println("database created") ;

 stmt.close() ;

 cn.close() ;

}

catch(Exception e)

{

 System.out.println(e);

}

}

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 23

Output: database created

Example-2

Write a JDBC program to create table having following structure.

id name (20)

import java.sql.*;

public class CreateTable

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root","");

Statement stmt=cn.createStatement();

 stmt.execute("drop table stud"); //if table stud is already exit

String sql = "create table stud(id int,name varchar(20))";

 stmt.execute(sql);

 System.out.println("Table is created") ;

 stmt.close() ;

 cn.close() ;

 }

catch(Exception e)

 {

 System.out.println(e);

 }

}

}

Output: Table is created

Example -3 Write a JDBC program to insert data into table.

import java.sql.*;

public class insert

{

 public static void main(String[] args)

 {

 try

 {

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 24

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root","");

Statement stmt=cn.createStatement();

 String sql = "INSERT INTO stud VALUES (1, 'Rita')";

 stmt.execute(sql);

String sql = "INSERT INTO stud VALUES (2, 'Ram')";

 stmt.execute(sql);

System.out.println(“Row is inserted") ;

ResultSet rs=stmt.executeQuery("select DISTINCT * from stud ");

while(rs.next())

 {

 System.out.print(rs.getInt("id")+"\t");

 System.out.print(rs.getString("name")+"\n");

 }

 rs.close() ;

 stmt.close() ;

 cn.close() ;

 }

catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

Output:

Row is inserted

1 Rita

2 Ram

Example -4 Write a JDBC program to delete data from table.

import java.sql.*;

public class del

{

 public static void main(String args[])

 {

 try

 {

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 25

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root","");

Statement stmt=cn.createStatement();

 String sql = "delete from stud " + "where id=2";

 stmt.execute(sql);

 System.out.println("Row is deleted") ;

 ResultSet rs=stmt.executeQuery("select DISTINCT * from stud ");

 while(rs.next())

 {

 System.out.print(rs.getInt("id")+"\t"); // you can use 1 instead of id,where

1 is column index

 System.out.print(rs.getString("name")+"\n");

 }

 rs.close() ;

 stmt.close() ;

 cn.close() ;

 }

catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

Output :

Row is deleted

 1 Rita

Example -5 Write a JDBC program to update data from table.

import java.sql.*;

public class update

{

 public static void main(String[] args)

 {

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root","");

Statement stmt=cn.createStatement();

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 26

 int up=stmt.executeUpdate("update stud set name='Sita' where id=1");

if(up>0)

 {

 System.out.println("Record Sucessfully Updated...!!!");

 }

ResultSet rs=stmt.executeQuery("select DISTINCT * from stud ");

 while(rs.next())

 {

 System.out.print(rs.getInt("id")+"\t");

 System.out.print(rs.getString("name")+"\n");

 }

 rs.close() ;

 stmt.close() ;

 cn.close() ;

 }

catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

Output :

Record Sucessfully Updated...!!!

1 Sita

Example -6 Write a JDBC program to display record from table.

import java.sql.*;

public class selectdata

{

 public static void main(String args[])

{

 try

{

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root", "");

Statement stmt=cn.createStatement();

 System.out.println(“ Table data :”);

 ResultSet rs=stmt.executeQuery("select distinct * from stud");

 while(rs.next())

 {

 System.out.print(rs.getInt("id")+ "\t");

 System.out.print(rs.getString("name")+"\n");

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 27

 }

}

catch(Exception e)

{

 System.out.println(e);

 }

}

}

Output ;

Table data :

1 Sita

 Program using prepareStatement()

Example -7

Write JDBC program to insert data using PreparedStatement interface.

import java.sql.*;

public class insert

 {

 public static void main(String[] args)

 {

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root","");

String sql = "insert into stud(id, name) values(?, ?)";

 PreparedStatement pstmt=cn.prepareStatement(sql);

 pstmt.setInt(1, 10); // set input parameter 1 for id,value 100

 pstmt.setString(2, "dhara"); // set input parameter 2 for name ,value dhara

 pstmt.executeUpdate();

 ResultSet rs=pstmt.executeQuery("select DISTINCT * from stud ");

 while(rs.next())

 {

 System.out.print(rs.getInt("id")+"\t");

 System.out.println(rs.getString("name")+"\t");

 }

 pstmt.close() ;

 cn.close() ;

 }

catch(Exception e)

 {

 System.out.println(e);

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 28

 }

}

}

Output :

 10 dhara

Example -8

Write JDBC program to delete data from table using PreparedStatement

interface.

import java.sql.*;

public class delete

{

 public static void main(String[] args)

 {

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root","");

 String sql="delete from stud where id=?";

PreparedStatement pstmt=cn.prepareStatement(sql);

 pstmt.setInt(1,10); //10 is id you want to delete

 pstmt.executeUpdate();

 ResultSet rs=pstmt.executeQuery("select DISTINCT * from stud ");

 while(rs.next())

 {

 System.out.print(rs.getInt("id")+"\t");

 System.out.println(rs.getString("name")+"\t");

 }

 rs.close() ;

 pstmt.close() ;

 cn.close() ;

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 29

Example -9

Write JDBC program to update data from table using PreparedStatement

interface.

import java.sql.*;

public class updatepre

{

 public static void main(String[] args)

 {

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb1","root","");

 String sql= "UPDATE stud SET name = ? WHERE id = ?";

PreparedStatement pstmt = cn.prepareStatement(sql);

 pstmt.setString(1, "abc"); // name =abc

 pstmt.setInt(2, 10); //id=10

 // execute insert SQL stetement

 int up=pstmt .executeUpdate();

 if(up>0)

 {

 System.out.println("Record Sucessfully Updated...!!!");

 }

 ResultSet rs=pstmt.executeQuery("select DISTINCT * from stud ");

 while(rs.next())

 {

 System.out.print(rs.getInt("id")+"\t");

 System.out.print(rs.getString("name")+"\n");

 }

 rs.close() ;

 pstmt.close() ;

 cn.close() ;

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

Output:

Record Sucessfully Updated...!!!

10 abc

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 30

Example 10 :

Write a program which creates GUI and performs following operations:

1) Insert 2) delete 3) Update

import java.awt.*;

import javax.swing.*;

import java.sql.*;

import java.awt.event.*;

public class textdata extends JApplet implements ActionListener

{

JTextField jtf1=new JTextField(10);

JTextField jtf2=new JTextField(10);

JLabel jlb1=new JLabel("id :",JLabel.CENTER);

JLabel jlb2=new JLabel("name:",JLabel.CENTER);

JLabel jlb3=new JLabel(" ");

JLabel jlb4=new JLabel(" ");

JButton jbinst=new JButton("Insert");

JButton jbdlt=new JButton("Delete");

JButton jbrst=new JButton("Reset");

JButton jbupdt=new JButton("Update");

Statement stmt;

ResultSet rs;

public void init()

{

jbinst.addActionListener(this);

jbdlt.addActionListener(this);

jbrst.addActionListener(this);

jbupdt.addActionListener(this);

JPanel jp=new JPanel();

jp.setLayout(new GridLayout(0,2));

jp.add(jlb1);

jp.add(jtf1);

jp.add(jlb2);

jp.add(jtf2);

jp.add(jbinst);

jp.add(jbdlt);

jp.add(jbrst);

jp.add(jbupdt);

jp.add(jlb3);

jp.add(jlb4);

add(jp);

initializeDB();

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 31

}

private void initializeDB()

{

try

{

Class.forName("com.mysql.jdbc.Driver");

Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root"

,"");

System.out.println("database connection");

stmt=cn.createStatement();

}

catch(Exception e)

{

System.out.println(e);

}

}

public void actionPerformed(ActionEvent e)

{

String s1,s2;

if(e.getActionCommand().equals("Insert"))

{

s1= jtf1.getText();

s2= jtf2.getText();

try

{

int in=stmt.executeUpdate("INSERT INTO stud VALUES

('"+s1+"','"+s2+"')");

if(in>0)

System.out.println("inserted") ;

String qs="select distinct* from stud";

rs=stmt.executeQuery(qs);

if(rs.next())

{

String st1=s1;//rs.getString(1);

String st2=s2;//rs.getString(2);

jlb3.setText("id is: "+st1);

jlb4.setText("name is: "+st2);

}

}

catch(SQLException ex)

{

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 32

ex.printStackTrace();

}

}

if(e.getActionCommand().equals("Delete"))

{

try

{

String sql = "delete from stud " + "where id="+jtf1.getText();

stmt.execute(sql);

JOptionPane.showMessageDialog(null, "Record is deleted!!!");

}

catch(SQLException ex)

{

ex.printStackTrace();

}

}

if(e.getActionCommand().equals("Update"))

{

try

{

String sql="update stud set name='"+jtf2.getText()+"' where id =

"+jtf1.getText()+"";

stmt.execute(sql);

JOptionPane.showMessageDialog(null, "Record is Updated!!!");

}

catch(SQLException ex)

{

ex.printStackTrace();

}

}

if(e.getActionCommand().equals("Reset"))

{

jtf1.setText("");

jtf2.setText("");

jlb3.setText("");

jlb4.setText("");

}

}

}

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 33

Output:

Insert

Reset

Delete

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 34

Example -11

Write a program which display product detail when user selects any product.

import java.sql.*;

import java.util.*;

import javax.swing.*;

import java.awt.event.*;

public class product extends JApplet implements ActionListener

{

 /**

 create table product(pid int, productname varchar(25), price int);

 insert into product values(1, 'Laptop', 35000);

 insert into product values(2, 'SmartPhone', 15000);

 insert into product values(3, 'LED TV 48 Inch', 50000);

 insert into product values(4, 'Iphone', 60000);

 insert into product values(5, 'Tablet', 10000);

 */

 ArrayList<String> list = new ArrayList<>();

 JComboBox jcb;

 Connection cn;

 Statement stmt;

 ResultSet rs;

 JPanel pc = new JPanel();

 JLabel jlb = new JLabel("Select Product");

 JLabel jlb1 = new JLabel("Product = ");

 JLabel jlb2 = new JLabel("Price = ");

 JLabel jlproduct = new JLabel();

 JLabel jlprice = new JLabel();

 public void init()

 {

initializeDB();

 try

 {

 list.add("Select Product");

 ResultSet rs = stmt.executeQuery("select * from product");

 while(rs.next())

 {

 list.add(rs.getString("productname"));

 }

 }

 catch(Exception e)

 {

 e.printStackTrace();

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 35

 }

 pc.setLayout(null);

 jlb.setBounds(15, 25, 100, 25);

 jcb = new JComboBox(list.toArray());

 jcb.setBounds(110, 25, 150, 25);

 jcb.addActionListener(this);

 jlb1.setBounds(15,60,70,25);

 jlproduct.setBounds(80,60,160,25);

 jlb2.setBounds(180,60,50,25);

 jlprice.setBounds(230,60,70,25);

 pc.add(jlb);

 pc.add(jcb);

 pc.add(jlb1);

 pc.add(jlb2);

 pc.add(jlproduct);

 pc.add(jlprice);

 add(pc);

 setSize(325, 245);

 }

 private void initializeDB()

 {

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","root","");

 System.out.println("database connection");

 stmt=cn.createStatement();

 } catch(Exception e){

 System.out.println(e);

 }

 }

 public void actionPerformed(ActionEvent e)

{

 JComboBox cb = (JComboBox)e.getSource();

 String proName = (String)cb.getSelectedItem();

updateLabel(proName);

 }

 public void updateLabel(String proName)

 {

 try

 {

 ResultSet rs = stmt.executeQuery("select * from product where

productname='"+proName+"'");

Unit-3 JDBC AJAVA(3360701)

Government Polytechnic,Ahmedabad Page 36

 while(rs.next())

 {

 jlproduct.setText(proName);

 jlprice.setText(rs.getString("price"));

 }

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

}

Output:

	 JDBC Architecture
	Common JDBC Components:
	Commonly used methods of DriverManager class:

	2) Connection interface:
	3) Statement interface
	Commonly used methods of Statement interface:
	Commonly used methods of ResultSet interface

	PreparedStatement interface
	How to get the instance of PreparedStatement?
	Methods of PreparedStatement interface
	JDBC Drivers Types:
	Type 1: JDBC-ODBC Bridge Driver:
	Type 2: JDBC-Native API:
	Type 3: JDBC-Net pure Java:
	Type 4: 100% pure Java:
	Which Driver should be used?
	1. Create Database:
	 The CREATE DATABASE statement is used for creating a new database. The syntax is:
	Example: The following SQL statement creates a Database named EMP:
	2. Drop Database:
	3. Create Table:
	Example: The following SQL statement creates a table named Employees with four columns:
	4. Drop Table:
	Example: The following SQL statement deletes a table named employees:
	5. INSERT Data:
	6. SELECT Data:
	7. UPDATE Data:
	Example:The following SQL UPDATE statement changes the age column of the employee whose id is 10
	8. DELETE Data:
	 Creating JDBC Application:
	1) Register the driver class
	Syntax :
	Example to register the OracleDriver class
	2) Create the connection object
	Example to establish connection with the Oracle database
	3) Create the Statement object:
	Syntax
	public Statement createStatement()throws SQLException
	Example
	Statement stmt=con.createStatement();
	4) Execute the query
	Syntax (1)
	Example (1)
	5) Close the connection object
	Syntax (2)
	Example (2)
	con.close();

	Example to connect to the mysql database
	Example to Connect Java Application with mysql database
	Two ways to load the jar file:
	1) paste the mysqlconnector.jar file in JRE/lib/ext folder:
	Download the mysqlconnector.jar file. Go to jre/lib/ext folder and paste the jar file
	2) set classpath:
	There are two ways to set the class path:

