Unit-3: Vectors

3.	L22 TO	Vectors		
	L28	Course Outcome (CO c):		
		Demonstrate the ability to Crack engineering related problems based on concepts of		
		Vectors.		
	22	Vector and scalar quantities		
		Scalar: Any quantity which is represented by only magnitude is called a scalar		
		e.g. time, length, distance,		
		Vector: Any quantity which has magnitude as well as direction is called a vector e.g.		
		Force, velocity, acceleration,		
		Vectors are generally denoted by $\overline{x}, \overline{y}, \overline{z}$ etc. Where $\overline{x} = (x_1, x_2, x_3), \overline{y} = (y_1, y_2, y_3),$		
		and		
		$z = (z_1, z_2, z_3)$ Where $x_i, y_i \& z_i \in R$		
		Illustration of Scalar and vector quantity.		
		Physical, Geometrical and Mathematical representation of vector, Position vectors in		
		terms of i, j & k		
	23	Illustration of above definitions Magnitude and direction of vectors		
		Magnitude of vector: If $\overline{x} = (x_1, x_2, x_3)$ then $ \overline{x} = \sqrt{x_1^2 + x_2^2 + x_3^2}$ where $ \overline{x} $ is magnitude		
		<u>Magnitude of vector</u> : If $x = (x_1, x_2, x_3)$ then $ x = \sqrt{x_1^2 + x_2^2 + x_3^2}$ where $ x $ is magnitude		
		of vector \overline{x} .		
		Types of vector: Null, Unit, Opposite, Parallel, Orthogonal vectors		
		- Units vectors I, j & k		
		<u>Unit vector</u> : If $ \overline{x} = 1$ then vector \overline{x} is called unit vector and it is denoted by x, By		
		$\frac{-x}{x}$		
		definition $x = \frac{x}{\left \overline{x}\right }$.		
		Unit vectors in direction of X, Y & Z axes is denoted by i, j & k and is		
		defined as		
		i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1).		
		Algebraic operations of vectors:		
		Operations between vectors:		
		(i) Equality: Two vectors $\overline{x} \& \overline{y}$ are equal i.e. $\overline{x} = \overline{y}$ if $x_1 = y_1, x_2 = y_2 \&$		
		$x_{3} = y_{3}$		
		(ii) Addition: $\overline{x} + \overline{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$		
		(iii) Multiplication by scalar: $\alpha x = (\alpha x_1, \alpha x_2, \alpha x_3)$		
		$(m) \qquad \text{ from prediction by beauties } \alpha_{\lambda} - (\alpha_{\lambda_1}, \alpha_{\lambda_2}, \alpha_{\lambda_3})$		

24	Vector addition satisfies following properties:		
24	vector addition satisfies following properties:		
	(i.) Closure Property: If $\overline{x} \& \overline{y}$ are vectors then $\overline{x} + \overline{y}$ is also a vector i.e.		
	$\overline{x} = (x_1, x_2, x_3) \& \overline{y} = (y_1, y_2, y_3)$, are vector then		
	$\overline{x} + \overline{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ is also a vector.		
	(ii.) Commutative Property: If $\overline{x} \And \overline{y}$ are vector then $\overline{x} + \overline{y} = \overline{y} + \overline{x}$		
	(iii.) Associative Property: If $\overline{x}, \overline{y} \& \overline{z}$ are vectors then $(\overline{x} + \overline{y}) + \overline{z} = \overline{x} + (\overline{y} + \overline{z})$.		
	(iv.) Additive identity: $\theta = (0,0,0)$ is null vector so, $\overline{x} + \theta = \theta$.		
	Additive inverse: $\overline{x} + (-\overline{x}) = \theta$.		
	Examples on above topics.		
25	Dot & cross product of two vectors		
	<u>Angle between two vectors</u> : If θ is an angle between two vectors then,		
	$\theta = \cos^{-1}\left(\frac{\overline{x} \cdot \overline{y}}{ \overline{x} \overline{y} }\right)$		
	Inner Product (Dot product) : If $\overline{x} = (x_1, x_2, x_3)$ and $\overline{y} = (y_1, y_2, y_3)$, then dot product		
	(inner product) of		
	$\overline{x} \And \overline{y}$ is defined as $\overline{x} \cdot \overline{y} = x_1 y_1 + x_2 y_2 + x_3 y_3$		
	$= \overline{x} \overline{y} \cos\theta$, θ is an angle between vectors $\overline{x} \& \overline{y}$		
	$- x y \cos \theta$, o is an angle between vectors $x \approx y$		
	•		
	Properties of dot product : (i) $\overline{x \cdot y} = \overline{y \cdot x}$, (ii) $(\overline{x} + \overline{y}) \cdot \overline{z} = \overline{x \cdot z} + \overline{y \cdot z}$,		
	(iii) $\overline{x} \neq \theta$ then $\overline{x} \cdot \overline{x} > 0$ and $\overline{x} \cdot \overline{x} = \overline{x} = x_1^2 + x_2^2 + x_3^2 > 0$.		
	Outer Product (vector product or cross product) : If $\overline{x} = (x_1, x_2, x_3) \& \overline{y} = (y_1, y_2, y_3)$,		
	are two vectors		
	Then outer product of this vectors is denoted by $\overline{x} \times \overline{y}$ and is defined as		
	$\overline{x} \times \overline{y} = \begin{vmatrix} x_1 & x_2 & x_3 \end{vmatrix}$		
	$\vec{x} \times \vec{y} = \begin{vmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$		
	<u>Or</u>		
	$\overline{x} \times \overline{y} = (x_2 y_3 - x_3 y_2, \overline{x_3} y_1 - x_1 y_3, x_1 y_2 - x_2 y_1)$		
	Direction cosines of vector		

26			
	<u>Properties of outer product:</u> If \overline{r} ,		
	If $\overline{x}, \overline{y} \& \overline{z} \in R^3$ are three vectors then		
	(i) $\overline{x} \times \theta = \theta$, (ii) $\overline{x} \times \overline{x} = \theta$, (iii) $\overline{x} \times \overline{y} = -\overline{y} \times \overline{x}$, (iv) $\overline{x} \times \alpha \overline{y} = \alpha(\overline{x} \times \overline{y})$, (v) $\overline{x} \times (\overline{y} + \overline{z}) = (\overline{x} \times \overline{y}) + (\overline{x} \times \overline{z})$.		
	(iv) $x \times \alpha y = \alpha(x \times y)$, (v) $x \times (y+z) = (x \times y) + (x \times z)$.		
	Lagrange's identity : If $x_1, x_2, x_3, y_1, y_2, y_3$ are real numbers then		
	$(x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1y_1 + x_2y_2 + x_3y_3)^2 = (x_2y_3 - x_3y_2)^2 + (x_3y_1 - x_1y_3)^2 + (x_2y_1 - x_1y_3)^2 + (x_3y_1 - x_1y_1 - x_1y_1 + x_1y_2)^2 + (x_3y_1 - x_1y_1 - x_1y_1 + x_1y_2)^2 + (x_3y_1 - x_1y_1 - x_1y_1 - x_1y_1 + x_1y_2)^2 + (x_3y_1 - x_1y_1 - x_1y_1 + x_1y_2)^2 + (x_3y_1 - x_1y_1 - x_1y_1 + x_1y_1$		
	$\left \overline{x}\right ^{2}\left \overline{y}\right ^{2} - (\overline{x} \cdot \overline{y})^{2} = \left \overline{x} \times \overline{y}\right ^{2}$		
	Box Product of three vectors : Box product of three vectors $\overline{x}, \overline{y} \& \overline{z} \in R^3$ is $\overline{x} \cdot (\overline{y} \times \overline{z})$ and		
	it is denoted by symbol $\begin{bmatrix} \overline{x} \ \overline{y} \ \overline{z} \end{bmatrix}$.		
	$\begin{vmatrix} x_1 & x_2 & x_3 \end{vmatrix}$		
	Properties of box product: (i) $\begin{bmatrix} \overline{xyz} \end{bmatrix} = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$, (ii) $\begin{bmatrix} \overline{xyz} \end{bmatrix} = \begin{bmatrix} \overline{yzx} \end{bmatrix} = \begin{bmatrix} \overline{zxy} \end{bmatrix}$,		
	(iii) $\overline{x} \times (\overline{y} \times \overline{z}) = (\overline{x} \cdot \overline{z})\overline{y} - (\overline{x} \cdot \overline{y})\overline{z}$		
Examples on above topics			
27 TO 28	- Definition of work done by force and moment of force		
	$\frac{\text{Application of Vectors}}{100000000000000000000000000000000000$		
	(i) <u>Magnitude and direction of resultant force</u> : If force $F_1, F_2, F_3, F_4, \dots, F_n$ act		
	on a particle then the resultant force acting on the particle is $\overline{F} = \overline{F_1} + \overline{F_2} + \overline{F_3} + \overline{F_4} + \dots + \overline{F_n}$. Here $ \overline{F} $ is magnitude of resultant force and		
	direction of resultant force is direction of vector \overline{F} .		
	(ii) <u>Work</u> : If a particle gets displacement(d) from point A to B under the force \overline{F} then, work W done by force \overline{F} is		
	$W = \overline{F} \cdot \overline{d} = \overline{F} \overline{d} \cos \theta, \text{ where } \theta \text{ is an angle between vectors } \overline{F} \& \overline{d}.$		
	<i>n</i> is unit vector in direction of M. Examples on above topics.		

Unit 03: Vectors

<u>Course Outcome</u>: CO c) Demonstrate the ability to Crack engineering related problems based on concepts of Vectors.

Question Set for <u>01 Mark</u>

	Stion Set for <u>of Mark</u>	
1	If $\overline{a} = 2i + 3j + k$, $\overline{b} = 2i - 3j + 2k$, then $\overline{a} + \overline{b} = \dots$	Ans. $4i+3k$
2	If $\overline{a} = 2i + 3j$, $\overline{b} = 3i - j - 2k$, then $\overline{a} - \overline{b}$ is	Ans. $-i + 4j + 2k$
3	If $\overline{a} = -i + 3j$, then $ \overline{a} = \dots$	Ans. $\sqrt{10}$
4	$\overline{u} = (1/\sqrt{5}) i + (2/\sqrt{5}) j$ then $ \overline{u} = \dots$	Ans. 1
5	$\overline{a} = 3i - 4j - 5\sqrt{3} k$ then $ \overline{a} = \dots$	Ans. 10
6	If $\overline{a} = -i + 3j$ and $\overline{b} = 2i + 3j$, then $ \overline{a} + \overline{b} \dots$	Ans. $\sqrt{10} + \sqrt{13}$
7	$\overline{a} = 2i - 3j$, $\overline{b} = 3j - 4k$ and $\overline{c} = 4k - 2i$ then $\overline{a} + \overline{b} + \overline{c} = \dots$	Ans. 0
8	If $\overline{a} = 2i + j$ and $\overline{b} = i - 3k$, then $\overline{a} \cdot \overline{b} = \dots$	Ans. 2
9	If $\overline{a} = 2i + j + k$ and $\overline{b} = i - j + 3k$, then $\overline{a} \cdot \overline{b} = \dots$	Ans .4
10	$\overline{a} = 2i - 2j + k$ and $\overline{b} = i + 3j + 3k$, then $\overline{a} \cdot \overline{b} = \dots$	Ans1
11	$\overline{a} = 2i + 3j - k$ and $\overline{b} = 4i + 6j - 2k$ then $\overline{a} \times \overline{b} = \dots$	Ans. 0
12	$\overline{a} = i + 3j - k, \ \overline{b} = 4i + j - 2k \text{ then } \overline{a} \ge \overline{b} = \dots$	Ans $(5i + 2j + 11k)$
13	$\overline{a} = i + j$ and $\overline{b} = j - i$ then angle $(\overline{a}, \overline{b}) = \dots$	Ans. $\pi/2$
14	$\overline{a} = 2i - 3j$, $\overline{b} = i - 3j$ and $\overline{c} = 3i + j$ then $2\overline{a} - (\overline{b} + \overline{c}) = \dots$	Ans4j
15	$\overline{a} = i + 3j$ and $\overline{b} = 5i - j$ then $ \overline{a} + 3\overline{b} = \dots$	Ans. 16
16	$\overline{x} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ then $ \overline{x} = \dots$	Ans. 1
17	$\overline{a} \times \overline{a} = \dots$	Ans. 0
18	$\overline{a} \cdot \overline{a} = \dots$	Ans. $ \overline{a} ^2$
19	$\overline{a} \cdot (\overline{a} \times \overline{b}) = \dots$	Ans. 0
20	$(\overline{a} \times \overline{b}) \cdot (\overline{b} \times \overline{a}) = \dots$	Ans- $\left \overline{a}\times\overline{b}\right ^2$
L	1	1

Qu	Question Set for 03 Marks			
1	If $\overline{a} = 2i + j - 3k$, $\overline{b} = 4i + 5j + 4k$ and $\overline{c} = 3i - 2j + k$ then find	5i + 19j - 4k		
	$3\overline{a} + 2\overline{b} - 3\overline{c}$			
2	If $\overline{a} = i - 2j + 4k$, $\overline{b} = -3i + j - 4k$ and $\overline{c} = i + 2j - 4k$ then find	Ans: $\sqrt{13}$		
	$\left 5\overline{a}+3\overline{b}+2\overline{c}\right $			
3	If $\overline{a} = j + k - i$ and $\overline{b} = 2i + j - 3k$ then find $ 2\overline{a} + 3\overline{b} $	Ans: $3\sqrt{10}$		
4	If $\overline{a} = 3i - j - 4k$, $\overline{b} = -2i + 4j - 3k$ and $\overline{c} = -i + 2j - 5k$ then find	Ans:		
	direction cosines of $\overline{a} + 2\overline{b} - \overline{c}$.	$l = 0, m = \frac{1}{\sqrt{2}}, n = \frac{-1}{\sqrt{2}}$ Ans: $a = 1, b = 2, c = 3$		
5	If $a(1, 0, 0) + b(0, 2, 0) + c(0, 0, 3) = (3, 4, 9)$ then find a, b and c.	Ans: $a = 1, b = 2, c = 3$		
6	If $\overline{a} = 3i - 2j - \sqrt{5}k$ and $\overline{b} = 4i + 2j + \sqrt{5}k$ then find the projection of	Ans: 3/5		
	\overline{a} on \overline{b} .			
7	If $\overline{a} = i - j + k$, $\overline{b} = 2i - j + k$ and $\overline{c} = i + j - 2k$ then find $\overline{a} \cdot (\overline{b} + \overline{c})$.	Ans: 2		
8	If $\overline{x} = 3i - j + 2k$ and $\overline{y} = 2i + j - k$ then find the vector perpendicular	Ans: $\frac{-i+7j+5k}{\sqrt{75}}$		
	to both \overline{x} and \overline{y} .	V/3		
9	If $\overline{a} = 10i + 2j + 3k$, $\overline{b} = i - 2j + 2k$ and $\overline{c} = 3i - 2j - 2k$ then find	Ans: 4		
	$\overline{a} \cdot (\overline{b} \times \overline{c})$			
10	For what value of m , the vectors $2i-3j+5k$ and $mi-6j-8k$ are	<i>m</i> =11		
	perpendicular to each other?			
11	For $\overline{x} = (-4, 9, 6)$, $\overline{y} = (0, 7, 10)$ and $\overline{z} = (-1, 6, 6)$ show that			
	$(\overline{x}-\overline{z})\cdot(\overline{y}-\overline{z})=0.$			
12	Show that the angle between the vectors $2i + j + 4k$ and $i + j + k$ is			
	$\cos^{-1}\frac{\sqrt{7}}{3}$			
13	Show that the angle between the vectors $i + j - k$ and			
	$2i - 2j + k$ is $\sin^{-1}\sqrt{\frac{26}{27}}$.			

14	Find a unit vector perpendicular to the vector $\overline{a} = (5, 7, -2)$ and $\overline{b} = (3, 1, -2)$.	Ans: $\frac{1}{\sqrt{26}}(-3,1,-4)$
15	If $A = i - j - 3k$ and $B = j + 2i - k$ then prove that $(A \times B)$ is	
	perpendicular to A	

Question Set for <u>04 Marks</u>

1	If $\overline{x} = (1,1,1)$ and $\overline{y} = (2,-1,-1)$ then prove that \overline{x} is perpendicular to \overline{y} . Also find an unit vector perpendicular to both \overline{x} and \overline{y} .	Ans: $\frac{1}{3\sqrt{2}}(3j-3k)$
2	If $\overline{a} = 2i - 3j + 4k$ and $\overline{b} = i - j + k$ find unit vector perpendicular to $\overline{a} + \overline{b}$ and $\overline{a} - \overline{b}$.	Ans: $\frac{1}{2\sqrt{6}}(-2i-4j-2k)$
3	A body is acted upon the forces $3i - 2j + k$ and $-i - j + 2k$. If the body moves under the forces from the point (2, 2, -3) to (-1, 2, 4), find workdone.	Ans. 15 units
4	A body is acted upon the forces $3i - 2j + 3k$ and $-j + 2k$. If the body moves under the forces from the point (2, 0, -3) to (-1, 2, 2), find workdone.	Ans. 10 units
5	Forces $3i \cdot j + 2k$ and $i + 3j \cdot k$ are acting on a particle and the particle moves from $2i + 3j + k$ to the point $5i + 2j + 3k$ under these forces. Find the work done by the force.	Ans: 12 units
6	A particle moves form the point $3i - 2j + k$ to the point $i + 3j - 4k$ under the effect of constant forces $i - j + k$, $i + j - 3k$ and $4i + 5j - 6k$. Find the work done.	Ans: 53 units
7	A force $F = 2i + j + k$ is acting at the point (-3, 2, 1). Find the magnitude of the moments of force F about the point (2, 1, 2).	Ans: √ 62
8	Find the moment about the point $(2, 3, -1)$ of the force $3i - k$ acting through the point $(1, -2, 1)$. Also find the magnitude of the moment.	Ans: $(5, 5, 15), 5\sqrt{11}$
9	If $x=i+j+k$ and $y=2i-j-k$, then show that x is perpendicular to y . Also find a vector which is perpendicular to both x and y	