Unit-3: Vectors

3.	$\begin{gathered} \hline \text { L22 TO } \\ \text { L28 } \\ \\ \hline 22 \end{gathered}$	Vectors Course Outcome (CO c): Demonstrate the ability to Crack engineering related problems based on concepts of Vectors. Vector and scalar quantities Scalar: Any quantity which is represented by only magnitude is called a scalar e.g. time, length, distance, Vector: Any quantity which has magnitude as well as direction is called a vector e.g. Force, velocity, acceleration, Vectors are generally denoted by $\bar{x}, \bar{y}, \bar{z}$ etc. Where $\bar{x}=\left(x_{1}, x_{2}, x_{3}\right), \bar{y}=\left(y_{1}, y_{2}, y_{3}\right)$, and $\bar{z}=\left(z_{1}, z_{2}, z_{3}\right) \text { Where } x_{i,} y_{i} \& z_{i} \in R$ Illustration of Scalar and vector quantity. Physical, Geometrical and Mathematical representation of vector, Position vectors in terms of $\mathrm{i}, \mathrm{j} \& \mathrm{k}$ Illustration of above definitions
	23	Magnitude and direction of vectors Magnitude of vector: If $\bar{x}=\left(x_{1}, x_{2}, x_{3}\right)$ then $\|\bar{x}\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}}$ where $\|\bar{x}\|$ is magnitude of vector \bar{x}. Types of vector: Null, Unit, Opposite, Parallel, Orthogonal vectors Units vectors I, j \& k Unit vector: If $\|\bar{x}\|=1$ then vector \bar{x} is called unit vector and it is denoted by x , By definition $\mathrm{x}=\frac{\bar{x}}{\|\bar{x}\|}$. Unit vectors in direction of $\mathrm{X}, \mathrm{Y} \& \mathrm{Z}$ axes is denoted by $\mathrm{i}, \mathrm{j} \& \mathrm{k}$ and is defined as $\mathrm{i}=(1,0,0), \mathrm{j}=(0,1,0) \text { and } \mathrm{k}=(0,0,1)$ Algebraic operations of vectors: Operations between vectors: (i) Equality: Two vectors $\bar{x} \& \bar{y}$ are equal i.e. $\bar{x}=\bar{y}$ if $x_{1}=y_{1}, x_{2}=y_{2} \&$ $x_{3}=y_{3}$ (ii) Addition: $\bar{x}+\bar{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)$ (iii) Multiplication by scalar: $\alpha \bar{x}=\left(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}\right)$

Unit 03: Vectors

Course Outcome: CO c) Demonstrate the ability to Crack engineering related problems based on concepts of Vectors.

Question Set for 01 Mark

1	If $\bar{a}=2 i+3 j+k, \bar{b}=2 i-3 j+2 k$, then $\bar{a}+\bar{b}=\ldots .$.	Ans. $4 i+3 k$
2	If $\bar{a}=2 i+3 j, \bar{b}=3 i-j-2 k$, then $\bar{a}-\bar{b}$ is	Ans. $-i+4 j+2 k$
3	If $\bar{a}=-i+3 j$, then $\|\bar{a}\|=\ldots .$.	Ans. $\sqrt{10}$
4	$\bar{u}=(1 / \sqrt{ } 5) i+(2 / \sqrt{ } 5) j$ then $\|\bar{u}\|=\ldots$	Ans. 1
5	$\bar{a}=3 i-4 j-5 \sqrt{ } 3 k$ then $\|\bar{a}\|=\ldots$.	Ans. 10
6	If $\bar{a}=-i+3 j$ and $\bar{b}=2 i+3 j$, then $\|\bar{a}\|+\|\bar{b}\| \ldots$	Ans. $\sqrt{10}+\sqrt{13}$
7	$\bar{a}=2 i-3 j, \bar{b}=3 j-4 k$ and $\bar{c}=4 k-2 i$ then $\bar{a}+\bar{b}+\bar{c}=\ldots$	Ans. 0
8	If $\bar{a}=2 i+j$ and $\bar{b}=i-3 k$, then $\bar{a} \cdot \bar{b}=\ldots$.	Ans. 2
9	If $\bar{a}=2 i+j+k$ and $\bar{b}=i-j+3 k$, then $\bar{a} \cdot \bar{b}=\ldots$.	Ans . 4
10	$\bar{a}=2 i-2 j+k$ and $\bar{b}=i+3 j+3 k$, then $\bar{a} \cdot \bar{b}=\ldots$	Ans. -1
11	$\bar{a}=2 i+3 j-k$ and $\bar{b}=4 i+6 j-2 k$ then $\bar{a} \times \bar{b}=\ldots$.	Ans. 0
12	$\bar{a}=i+3 j-k, \bar{b}=4 i+j-2 k$ then $\bar{a} \times \bar{b}=\ldots$.	Ans $\quad(5 i+2 j+11 k)$
13	$\bar{a}=i+j$ and $\bar{b}=j-i$ then angle $(\bar{a}, \wedge \bar{b})=\ldots \ldots$	Ans. $\pi / 2$
14	$\bar{a}=2 i-3 j, \bar{b}=i-3 j$ and $\bar{c}=3 i+j$ then $2 \bar{a}-(\bar{b}+\bar{c})=\ldots$.	Ans. $-4 j$
15	$\bar{a}=\mathrm{i}+3 j$ and $\bar{b}=5 i-j$ then $\|\bar{a}+3 \bar{b}\|=\ldots$	Ans. 16
16	$\bar{x}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ then $\|\bar{x}\|=\ldots$.	Ans. 1
17	$\bar{a} \times \bar{a}=\ldots$	Ans. 0
18	$\bar{a} \cdot \bar{a}=\ldots$	Ans. $\|\bar{a}\|^{2}$
19	$\bar{a} \cdot(\bar{a} \times \bar{b})=\ldots .$.	Ans. 0
20	$(\bar{a} \times \bar{b}) .(\bar{b} \times \bar{a})=\ldots$.	Ans- $\|\bar{a} \times \bar{b}\|^{2}$

Question Set for 03 Marks

1	If $\bar{a}=2 i+j-3 k, \bar{b}=4 i+5 j+4 k \quad$ and $\bar{c}=3 i-2 j+k$ then find $3 \bar{a}+2 \bar{b}-3 \bar{c}$	$5 i+19 j-4 k$
2	If $\quad \bar{a}=i-2 j+4 k, \bar{b}=-3 i+j-4 k$ and $\bar{c}=i+2 j-4 k \quad$ then find $\|5 \bar{a}+3 \bar{b}+2 \bar{c}\|$	Ans: $\sqrt{13}$
3	If $\bar{a}=j+k-i$ and $\bar{b}=2 i+j-3 k$ then find $\|2 \bar{a}+3 \bar{b}\|$	Ans: $3 \sqrt{10}$
4	If $\bar{a}=3 i-j-4 k, \bar{b}=-2 i+4 j-3 k$ and $\bar{c}=-i+2 j-5 k \quad$ then find direction cosines of $\bar{a}+2 \bar{b}-\bar{c}$.	Ans: $l=0, m=\frac{1}{\sqrt{2}}, n=\frac{-1}{\sqrt{2}}$
5	If $a(1,0,0)+b(0,2,0)+c(0,0,3)=(3,4,9)$ then find a, b and c.	Ans: $a=1, b=2, c=3$
6	If $\bar{a}=3 i-2 j-\sqrt{5} k$ and $\bar{b}=4 i+2 j+\sqrt{5} k$ then find the projection of \bar{a} on \bar{b}.	Ans: 3/5
7	If $\bar{a}=i-j+k, \bar{b}=2 i-j+k$ and $\bar{c}=i+j-2 k$ then find $\bar{a} \cdot(\bar{b}+\bar{c})$.	Ans: 2
8	If $\bar{x}=3 i-j+2 k$ and $\bar{y}=2 i+j-k$ then find the vector perpendicular to both \bar{x} and \bar{y}.	$\text { Ans: } \frac{-i+7 j+5 k}{\sqrt{75}}$
9	If $\bar{a}=10 i+2 j+3 k, \bar{b}=i-2 j+2 k$ and $\bar{c}=3 i-2 j-2 k \quad$ then find $\bar{a} \cdot(\bar{b} \times \bar{c})$	Ans: 4
10	For what value of m, the vectors $2 i-3 j+5 k$ and $m i-6 j-8 k$ are perpendicular to each other?	$m=11$
11	For $\bar{x}=(-4,9,6), \quad \bar{y}=(0,7,10) \quad$ and $\quad \bar{z}=(-1,6,6)$ show that $(\bar{x}-\bar{z}) \cdot(\bar{y}-\bar{z})=0$.	
12	Show that the angle between the vectors $2 i+j+4 k$ and $i+j+k$ is $\cos ^{-1} \frac{\sqrt{7}}{3}$	
13	Show that the angle between the vectors $i+j-k$ and $2 i-2 j+k$ is $\sin ^{-1} \sqrt{\frac{26}{27}}$.	

$\mathbf{1 4}$	Find a unit vector perpendicular to the vector $\bar{a}=(5,7,-2)$ and $\bar{b}=(3,1,-2)$.	Ans: $\frac{1}{\sqrt{26}}(-3,1,-4)$
$\mathbf{1 5}$	If $A=i-j-3 k$ and $B=j+2 i-k$ then prove that $(A \times B)$ is perpendicular to A	

Question Set for 04 Marks

1	If $\bar{x}=(1,1,1)$ and $\bar{y}=(2,-1,-1)$ then prove that \bar{x} is perpendicular to \bar{y}. Also find an unit vector perpendicular to both \bar{x} and \bar{y}.	$\text { Ans: } \frac{1}{3 \sqrt{2}}(3 j-3 k)$
2	If $\bar{a}=2 i-3 j+4 k$ and $\bar{b}=i-j+k$ find unit vector perpendicular to $\bar{a}+\bar{b}$ and $\bar{a}-\bar{b}$.	$\text { Ans: } \frac{1}{2 \sqrt{6}}(-2 i-4 j-2 k)$
3	A body is acted upon the forces $3 i-2 j+k$ and $-i-j+2 k$. If the body moves under the forces from the point $(2,2,-3)$ to $(-1,2,4)$, find workdone.	Ans. 15 units
4	A body is acted upon the forces $3 i-2 j+3 k$ and $-j+2 k$. If the body moves under the forces from the point $(2,0,-3)$ to $(-1,2,2)$, find workdone.	Ans. 10 units
5	Forces $3 i-j+2 k$ and $i+3 j-k$ are acting on a particle and the particle moves from $2 i+3 j+k$ to the point $5 i+2 j+3 k$ under these forces. Find the work done by the force.	Ans: 12 units
6	A particle moves form the point $3 i-2 j+k$ to the point $i+3 j-4 k$ under the effect of constant forces $i-j+k, i+j-3 k$ and $4 i+5 j-6 k$. Find the work done.	Ans: 53 units
7	A force $\mathrm{F}=2 i+j+k$ is acting at the point $(-3,2,1)$. Find the magnitude of the moments of force F about the point $(2,1,2)$.	Ans: $\sqrt{62}$
8	Find the moment about the point $(2,3,-1)$ of the force $3 i-k$ acting through the point $(1,-2,1)$. Also find the magnitude of the moment.	Ans: $(5,5,15), 5 \sqrt{11}$
9	If $x=i+j+k$ and $y=2 i-j-k$, then show that x is perpendicular to y. Also find a vector which is perpendicular to both x and y	

