Unit-4: Coordinate Geometry

4.	L29 TO Coordinate Geometry					
	L36 Course Outcome (CO d):					
		Solve basic engineering problems under given conditions of straight line lines and circle.				
	29	Reorientation: Distance formula for R2, Centroid of a triangle, Circum center, Midpoint of line segment, locus of point, Area of triangle, co linearity of three points. Distance Formulae:				
		Let $A(x1, y1)$ and $B(x2, y2)$ be the points of R2 then distance				
		between A and B is given by $d(A,B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \overline{AB}$				
		Centroid: Let $A(x1, y1)$, $B(x2, y2)$ and $C(x3, y3)$ forms the triangle then the centroid is				
		given by the G $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$				
		Examples on distance formulae & centroid of triangle				
	30 To 32	Equation of straight line passing through two points (x_1, y_1) and (x_2, y_2) > Slope (m): If θ is the angle made by the line with the + ve X- axis then tan θ is known				
		as slope of the line and θ is known as inclination of the line. Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$				
		> Two point form : $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$				
		Equation of straight line having an intercept 'c' on y-axis and slope 'm' Slope intercept form: $y = mx + c$, c is a y-intercept				
		Two intercept form: $\frac{x}{a} + \frac{y}{b} = 1$,				
		a & b are intercept on x & Y axis respectively. Examples on above equations				
	33	Equation of straight line having slope m and passing through two points (x_1, y_1) . Slope point form: $(y-y_1) = m(x-x_1)$ Parallel and perpendicular straight lines, relation between their slopes. > Parallel lines $\rightarrow m_1 = m_2$				
		→ Perpendicular lines → $m_1m_2 = -1$				

34	Perpendicular distance 'P' from a fixed point (x_1, y_1) of a line is
	$p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $
	> Expression for angle between two lines with slope $m_1 \& m_2$ is
	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $
	Examples on above topic
35 TO 36	Equation of circle having its center at (h, k) and radius r General equation of circle Equation of a circle with centre (h, k) and radius r is $(x-h)^2 + (y-k)^2 = r^2$.
	If the equation of a circle is $x^2 + y^2 + 2gx + 2fy + c = 0$.
	then centre of the circle is = (-g, -f) & Radius $r = \sqrt{g^2 + f^2 - c}$
	Examples of equation of circle

Unit - 04 Cordinate Geometry Course Outcome: CO d) Solve basic engineering problems under given conditions of straight line lines and circle.

Question for Mark 01

1)	Slope of line passing through points A (5, 7) and B (2, 1) is					
	(a) 3	(b) 2	(c) 4	(d) 1/2		
2)	Slope of line maki	ng an angle $\frac{\pi}{3}$ with p	positive direction of	<i>x</i> - axis is		
	(a) $\sqrt{3}$	(b) $\frac{1}{\sqrt{3}}$	(c) 1	(d) $\frac{1}{\sqrt{2}}$		
3)	Slope of line $2x + $	3y - 6 = 0 is				
	(a) 2/3	(b) 3/2	(c) -2/3	(d) -3/2		
4)	Slope of line 3y -	-4 = 0 is				
	(a) 0	(b) $\frac{3}{4}$	(c) 1	(d) $-\frac{3}{4}$		
5)	Slope of line paral	lel to the line $3x + 4$	<i>y</i> + 7 = 0 is	_		
	(a) 4/3	(b) 7/4	(c) 4/7	(d) -3/4		
6)	Slope of line pe	rpendicular to the lin	ne $5x - 7y + 3 = 0_{-}$			
	(a) 5/7	(b) 7/5	(c)-7/5	(d) 7/3		
7)	<i>x</i> -intercept of 1	ine $2x + 3y - 4 = 0$	is			
	(a) -2	(b) 2	(c) 4/3	(d) 1/2		
8)	y-intercept of li	ne $3x - 5y + 8 = 0$	is			
	(a) -8/3	(b)	8/5 (c) 5/8	(d) 3/5		

9) The perpendicular distance from the origin to the line 3x + 4y - 8 = 0 is _____

 $\frac{8}{25}$ $\frac{8}{25}$ (c) 4 (a) 8 (b) (d) 10) Equation of line passing through the origin and having slope $\frac{1}{2}$ is _____ (b) 2y = -x(c) x = 2y(a) 2y = x(d) x = -2y11) Centre of circle $x^2 + y^2 = 16$ is_____ (a) (1, 1)(b) (0, 0)(c) (4, 4)(d) (4, 0)12) Radius of circle $x^2 + y^2 = 9$ is_____ (a) (c) 3 (d) Not Defined (b) **13**) Equation of circle having centre (0,0) and radius 3 unit is_ (b) $x^2 + y^2 = 0$ (c) $x^2 + y^2 = 9$ (a) x = 3(d) x + y = 3

Question for Mark 03

- 1) Show that the points (a, b + c), (b, c + a) and (c, a + b) are collinear
- 2) Find k If the points (-k, 1), (k, 3) and (6, 5) are collinear k = 2
- 3) Find the equation of a line passing through (2, 3) and (3, -1). What is the slope? 4x + y 11 = 0, m = -4
- 4) Show that the two lines 7x + y 1 = 0 and 21x + 3y + 2 = 0 are parallel.
- 5) Show that the two lines 7x + y 1 = 0 and 3x 21y + 2 = 0 are perpendicular.
- 6) If two lines 8x 5y + 3 = 0 and 2x + ky + 2 = 0 are parallel then find k. k = -5/4
- 7) Two lines 4x ky = 0 and -3x 7y + 1 = 0 are perpendicular then find k. k = 12/7
- 8) If the slope of the line kx 5y = 7 is 4 then find k. k = 20
- 9) Find the equation of line passing through the point (4, 3) and parallel to the line x + 5y 19 = 0x + 5y + 3 = 0.
- **10**) Find centre and radius of the circle $4x^2 + 4y^2 + 8x 12y 3 = 0$ (-1, 3/2), 2
- 11) Find centre and radius of the circle $36x^2 + 36y^2 + 24x 36y 23 = 0$ (-1/3, 1/2), 1
- 12) Find the equation of the circle passing through (7, -2) and having centre (4, 3). $x^2 + y^2 8x 6y 9$
- 13) Find the equation of the circle which is passing through the point (-2, 5) and $x^2 + y^2 2x 2y$ having the equations of the diameters 2x + y - 3 = 0 and x - 3y + 2 = 0. -23 = 0
- 14) Find the equation of the circle passing through (-7, 1) and having centre $x^2 + y^2 = 50$ origin.

15) Find the equation of the circle passing through the points (4, 0) (0, 4) and (0, $x^2 + y^2 - 4x - 4y = 0$ 0).

> Question for Mark 04

1)	Find the equation of a line passing through $(3, 4)$ and	2x - 3y + 6 = 0,
	(i) Parallel & (ii) perpendicular to the line $3y - 2x = 1$.	3x + 2y - 17 = 0
2)	Find the equation of line passing through the point (4, 3) and perpendicular to the line $4y - 3x + 7 = 0$.	4x + 3y - 25 = 0
3)	Find the equation of line passing through the intersection of the lines $x - y$ =7 and $2x + y = 11$ and perpendicular to the line $3x - 4y = 7$.	4x + 3y - 21 = 0
4)	Find the equation of line passing through the intersection of the lines $x - y = -1$ and $3x + 4y = 5$ and parallel to the line $5x + y = 1$.	
5)	If A $(5, 4)$ and B $(-2, 0)$ are two points then find perpendicular bisector of line segment <i>AB</i> .	14 x + 8y - 37 = 0
6)	Find equation of the tangent and the normal to the circle $x^2 + y^2 - 2x + 4y - 2y + 4y + 2y + 2y + 4y + 2y + 2y + 2y +$	3x - 4y + 14 = 0,
	20 = 0 at the point (-2, 2).	4x + 3y + 2 = 0
7)	Find the equation of the tangent and the normal to the circle $x^2 + y^2 - 2y$ -7	x+y-5=0,
	= 0 at the point (2, 3).	x - y + 1 = 0