Unit-4: Coordinate Geometry

4.	L29 TO L36 29	Coordinate Geometry Course Outcome (CO d): Solve basic engineering problems under given conditions of straight line lines and circle. Reorientation: Distance formula for R2, Centroid of a triangle, Circum center, Midpoint of line segment, locus of point, Area of triangle, co linearity of three points. Distance Formulae: Let $\mathrm{A}(\mathrm{x} 1, \mathrm{y} 1)$ and $\mathrm{B}(\mathrm{x} 2, \mathrm{y} 2)$ be the points of R 2 then distance between A and B is given by $\mathrm{d}(\mathrm{A}, \mathrm{B})=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=\overline{A B}$ Centroid: Let $\mathrm{A}(\mathrm{x} 1, \mathrm{y} 1), \mathrm{B}(\mathrm{x} 2, \mathrm{y} 2)$ and $\mathrm{C}(\mathrm{x} 3, \mathrm{y} 3)$ forms the triangle then the centroid is given by the $\mathrm{G}\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$ Examples on distance formulae \& centroid of triangle
	30 To 32	Equation of straight line passing through two points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) Slope (m): If θ is the angle made by the line with the + ve X - axis then $\tan \theta$ is known as slope of the line and θ is known as inclination of the line. Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ Two point form : $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ Equation of straight line having an intercept ' c ' on y-axis and slope ' m ' Slope intercept form: $\mathrm{y}=\mathrm{mx}+\mathrm{c}, \mathrm{c}$ is a y -intercept Two intercept form: $\frac{x}{a}+\frac{y}{b}=1$, $\mathrm{a} \& \mathrm{~b}$ are intercept on $\mathrm{x} \& \mathrm{Y}$ axis respectively. Examples on above equations
	33	Equation of straight line having slope m and passing through two points ($\mathrm{x}_{1}, \mathrm{y}_{1}$). Slope point form: $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$ Parallel and perpendicular straight lines, relation between their slopes. $>$ Parallel lines $\rightarrow \mathrm{m}_{1}=\mathrm{m}_{2}$ \rightarrow Perpendicular lines $\rightarrow \mathrm{m}_{1} \mathrm{~m}_{2}=-1$

| 34 | Perpendicular distance ' P ' from a fixed point $\left(x_{1}, y_{1}\right)$ of a line is
 $p=\left\|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right\|$
 $>$
 Expression for angle between two lines with slope $\mathrm{m}_{1} \& \mathrm{~m}_{2}$ is
 $\tan \theta=\left\|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right\|$ |
| :---: | :---: | :--- |
| | 35 TO 36
 Examples on above topic |
| Equation of circle having its center at (h, k) and radius r
 General equation of circle
 Equation of a circle with centre (h, k) and radius r is $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$.
 If the equation of a circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 f \mathrm{y}+\mathrm{c}=0$.
 then centre of the circle is $=(-\mathrm{g},-\mathrm{f}) \& \operatorname{Radius~} \mathrm{r}=\sqrt{g^{2}+f^{2}-c}$
 Examples of equation of circle | |

Unit - 04 Cordinate Geometry

Course Outcome: CO d) Solve basic engineering problems under given conditions of straight line lines and circle.

Question for Mark 01

1) Slope of line passing through points $A(5,7)$ and $B(2,1)$ is
(a) 3
(b) 2
(c) 4
(d) $1 / 2$
2) Slope of line making an angle $\frac{\pi}{3}$ with positive direction of x - axis is \qquad
(a) $\sqrt{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) 1
(d) $\frac{1}{\sqrt{2}}$
3) Slope of line $2 x+3 y-6=0$ is \qquad .
(a) $2 / 3$
(b) $3 / 2$
(c) $-2 / 3$
(d) $-3 / 2$
4) Slope of line $3 y-4=0$ is \qquad
(a) 0
(b) $\frac{3}{4}$
(c) 1
(d) $-\frac{3}{4}$
5) Slope of line parallel to the line $3 x+4 y+7=0$ is \qquad
(a) $4 / 3$
(b) $7 / 4$
(c) $4 / 7$
(d) $-3 / 4$
6) Slope of line perpendicular to the line $5 x-7 y+3=0$ \qquad
(a) $5 / 7$
(b) $7 / 5$
(c) $-7 / 5$
(d) $7 / 3$
7) x-intercept of line $2 x+3 y-4=0$ is \qquad
(a) -2
(b) 2
(c) $4 / 3$
(d) $1 / 2$
8) y-intercept of line $3 x-5 y+8=0$ is \qquad
(a) $-8 / 3$
(b)
8/5
(c) $5 / 8$
(d) $3 / 5$
9) The perpendicular distance from the origin to the line $3 x+4 y-8=0$ is \qquad
(a) 8
(b) $\frac{8}{25}$
(c) 4
(d) $\frac{8}{25}$
10) Equation of line passing through the origin and having slope $\frac{1}{2}$ is \qquad
(a) $2 y=x$
(b) $2 y=-x$
(c) $x=2 y$
(d) $x=-$

2y
11) Centre of circle $x^{2}+y^{2}=16$ is \qquad
(a) $(1,1)$
(b) $(0,0)$
(c) $(4,4)$
(d) $(4,0)$
12) Radius of circle $x^{2}+y^{2}=9$ is \qquad
(a) 2
(b) 0
(c) 3
(d) Not Defined
13) Equation of circle having centre $(0,0)$ and radius 3 unit is
(a) $x=3$
(b) $x^{2}+y^{2}=0$
(c) $x^{2}+y^{2}=9$
(d) $x+y=3$

Question for Mark 03

1) Show that the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear
2) Find k If the points $(-k, 1),(k, 3)$ and $(6,5)$ are collinear $k=2$
3) Find the equation of a line passing through $(2,3)$ and $(3,-1)$. What is the slope?
$4 x+y-11=0$,
$m=-4$
4) Show that the two lines $7 x+y-1=0$ and $21 x+3 y+2=0$ are parallel.
5) Show that the two lines $7 x+y-1=0$ and $3 x-21 y+2=0$ are perpendicular.
6) If two lines $8 x-5 y+3=0$ and $2 x+k y+2=0$ are parallel then find k.
$k=-5 / 4$
7) Two lines $4 x-k y=0$ and $-3 x-7 y+1=0$ are perpendicular then find k.
$k=12 / 7$
8) If the slope of the line $k x-5 y=7$ is 4 then find k.
$k=20$
9) Find the equation of line passing through the point $(4,3)$ and parallel to the line $x+5 y-19=0$ $x+5 y+3=0$.
10) Find centre and radius of the circle $4 x^{2}+4 y^{2}+8 x-12 y-3=0$
$(-1,3 / 2), 2$
11) Find centre and radius of the circle $36 x^{2}+36 y^{2}+24 x-36 y-23=0$
$(-1 / 3,1 / 2), 1$
12) Find the equation of the circle passing through ($7,-2$) and having centre $(4,3)$.
13) Find the equation of the circle which is passing through the point $(-2,5)$ and $x^{2}+y^{2}-2 x-2 y$ having the equations of the diameters $2 x+y-3=0$ and $x-3 y+2=0$. $-23=0$
14) Find the equation of the circle passing through $(-7,1)$ and having centre $x^{2}+y^{2}=50$ origin.
15) Find the equation of the circle passing through the points (4, 0) (0,4) and ($0, \quad x^{2}+y^{2}-4 x-4 y$ $0)$.

$$
=0
$$

Question for Mark 04

1) Find the equation of a line passing through $(3,4)$ and

$$
2 x-3 y+6=0
$$

(i) Parallel \& (ii) perpendicular to the line $3 y-2 x=1$.

$$
3 x+2 y-17=0
$$

2) Find the equation of line passing through the point (4, 3) and perpendicular $4 x+3 y-25=0$ to the line $4 y-3 x+7=0$.
3) Find the equation of line passing through the intersection of the lines $x-y \quad 4 x+3 y-21=0$ $=7$ and $2 x+y=11$ and perpendicular to the line $3 x-4 y=7$.
4) Find the equation of line passing through the intersection of the lines $x-y=$ -1 and $3 x+4 y=5$ and parallel to the line $5 x+y=1$.
5) If $\mathrm{A}(5,4)$ and $\mathrm{B}(-2,0)$ are two points then find perpendicular bisector of $14 x+8 y-37=0$ line segment $A B$.
6) Find equation of the tangent and the normal to the circle $x^{2}+y^{2}-2 x+4 y-3 x-4 y+14=0$, $20=0$ at the point $(-2,2)$.
$4 x+3 y+2=0$
7) Find the equation of the tangent and the normal to the circle $x^{2}+y^{2}-2 y-7 \quad x+y-5=0$, $=0$ at the point $(2,3)$.
